
AUUG 2004 - Who Are You?

Comparing C Code Trees 55

Comparing C Code Trees
Warren Toomey

Faculty of IT, Bond University

<wkt@staff.bond.edu.au>

ABSTRACT
Ctcompare is a tool to lexically compare two C code trees for possible code copying. This

paper describes the motivation behind the creation of the tool, discusses some of the issues
that must be faced when attempting to compare code trees, and highlights some of the
design aspects of the tool.

1. Introduction
There are several reasons for constructing a

tool which can automate the comparison of
program source trees. For example, you may be
a large software house which has accumulated
several packages through mergers; if a
competitor sues you for using their copyright
code, the task of manually determining if this is
a valid claim would be arduous. In an academic
setting, a comparison tool would help to catch
students who have plagiarised from other
students or who have colluded on an
assignment. And in the newly-developing field
of computing history, a comparison tool could
help to explicate the development of a
computing artifact.

The motivation for the construction of
Ctcompare, the code comparison tool described
here, is more prosaic. In March 2003, the SCO
Group sued IBM for “misusing and
misappropriating SCO’s proprietary software;
inducing, encouraging, and enabling others to
misuse and misappropriate SCO’s proprietary
software; and incorporating (and inducing,
encouraging, and enabling others to
incorporate) SCO’s proprietary software into
open source software offerings.”[10] While the
original complaint did not explicitly mention
copyright violation as the means of software
misappropriation, follow-up press releases from
SCO and interviews with prominent SCO
executives did:

Although SCO’s claims about Linux
developers copying from SCO’s proprietary
UnixWare have been vague in the past, this time
[Chris] Sontag specifically claimed that there is
“significant copyrighted and trade secret code
within Linux”. When asked for examples of
infringement, Sontag said, “It’s all over the place”
but did not characterize any one subsystem as
containing more infringing code than others.
Infringement is present not only in distributions
and vendor kernels, but in the official kernel

available from kernel.org. Code has been “munged
around solely for the purpose of hiding the
authorship or origin of the code”, he said. … “We
specifically excluded the BSD-derived code”,
Sontag said. “There is post-BSD UnixWare
source code origined [sic] with SCO, and that is of
issue.”[5]

Replacing the illegal code seems
unimaginable, even if we would be the first to
approve such a solution. But we’re talking about
millions of lines of code and not a few dozen. On
top of that, the pieces that were taken are precisely
what makes Linux a viable solution for enterprise
deployment, like SMP and NUMA.[1]

At a trade show in August 2003, SCO showed
two snippets of source code which they claimed
were illegally copied from UNIX1 into the Linux
kernel. Subsequent analysis showed that one
snippet of code was indeed UNIX code which
had been released under a BSD license by
Caldera, and the second snippet of code
originated in BSD and was actually not UNIX
code[7, 9, 4].

2. Proving or Disproving Code 
Copying

Program source code can be copied in at least
two ways2:

• Literal copying: the direct copying of lines of
source from one system to another, with or
without comments, and with possible
rearranging by hand or with tools such as
indent(1).

• Non-literal copying: the transfer of methods,
structures and sequences from one system to
another. This includes data structures,
program interfaces and algorithms.

\end{enumerate}

1. UNIX is a trademark of the X/Open Group.
2. Issues such as trade secret and patent violations are not

covered in this paper.



AUUG 2004 - Who Are You?

56 Comparing C Code Trees

While the first form of copying is easy to spot,
the latter often requires human judgement.
Many of the federal courts in the United States
have adopted the following test to determine if
source code has been improperly copied:

In 1992, the Second Circuit Federal Court of
Appeals … developed a three-part test for
determining whether software is infringed under
the copyright laws. The test, which has become
known as the “abstraction/filtration/comparison”
test, is based upon a similar copyright
infringement test enunciated by Judge Learned
Hand in 1930 in Nichols v. Universal Pictures
Corp.

In the first step of the revised … test, the
computer program is divided into its various
levels of abstraction.

The second test, the “filtration” step, entails
examining the structural components of the
software at each level of abstraction to determine
(1) whether their particular inclusion at that level
was {}``ideaʹʹ or was dictated by considerations of
efficiency, (2) whether their inclusion was
required by factors external to the program itself,
such as a required data input or output protocol,
or (3) whether the structural components were
taken from the public domain. If a particular
structural component at each level of abstraction
satisfies any of the three criteria, then it is non-
protectable expression, and is not considered in
the final step of the test, described next.

The third and final step, the “comparison”
step, involves comparing the expression left after
the filtration step at each level of abstraction to the
accused software in order to determine whether
there is substantial similarity between the two. If
there is substantial similarity, and it can be shown
that the developer of the accused software had
access to the original software, then copyright
infringement may be found.[3]

While this approach provides a rigorous test
once suspect code has been found, it does not
find potentially misappropriated source code in
the first place.

3. Automating Code 
Comparison

The analyses of the purported code copying
from UNIX into Linux described in Section 1
were done by hand. In many cases, analysis was
done by someone who had intimate knowledge
of UNIX kernel source. However, performing a
similar analysis to prove if and where UNIX
source had been improperly copied into Linux
would be an impossible task: both systems are
comprised of many millions of lines of code.
Moreover, SCO has indicated their belief that

code had been “munged around solely for the
purpose of hiding the authorship or origin of the
code”. This would complicate the task still
further.

Another difficulty to be faced is the
confidentiality of proprietary source code. In the
SCO vs. IBM case, the Linux source code is freely
available but the UNIX source code is not. This
appears to limit the comparison of source code
to those who have legal access to the UNIX
source code. For the same reason, if source code
for an Open Source program was
misappropriated into a proprietary application,
the authors of the original program may not be
able to offer proof that the code had been copied.

In September 2003, Eric S. Raymond showed
that there was a way around the proprietary
software impasse with a C code comparison tool
called comparator:

Comparator is a program for quickly finding
common sections in two or more source-code trees.
… [It] works by first chopping the specified trees
into overlapping shreds (by default 3 lines long)
and computing a hash of each shred. The resulting
list of shreds is examined and all unique hashes are
thrown out. Then comparator generates a report
listing all cliques of lines with duplicate hashes,
with overlapping ranges merged. … A
consequence of the method is that comparator will
find common code segments wherever they are. It
is insensitive to rearrangements of the source
trees.[8]

Hashing the two sets of source code before
comparison allows the hashes for a proprietary
system to be openly published without the
disclosure of the actual source code. A person
with legal access to UNIX System V or UnixWare
source code could publish their hashes and
allow SCO’s claims of inappropriate code
copying to be verified.

4. Drawbacks of the Comparator 
Approach

Comparator suffers from several drawbacks
which limit it to the detection of simple line-by-
line code copying. It cannot deal with source
lines which have been split or concatenated.
Comparator also cannot detect code copying
where variables or functions have been
renamed. Examples of these are shown below:

Original Code
for (i = 0; error == -1 && execsw[i]; ++i) {
  if (execsw[i]->ex_imgact == NULL ||
    execsw[i]->ex_imgact == img_first) {
      continue;
  }
  error = (*execsw[i]->ex_imgact)(imgp);



AUUG 2004 - Who Are You?

Comparing C Code Trees 57

}
if (error) {
  if (error == -1)
    error = ENOEXEC;
  goto exec_fail_dealloc;
}

Copied Code
for (c = 0; err == -1 && exsw[c]; ++i) {
  if (exsw[c]->ex_imgact == NULL ||
    exsw[c]->ex_imgact == img_first) {
      continue;
  }
  err = (*exsw[c]->ex_imgact)(imgp);
}
if (err) {
  if (err == -1) err = ENOEXEC;
  goto exec__dealloc;
}

Simple code changes dealing with
whitespace, case sensitivity and removal/
inclusion of comments can be handled with
heuristics, but the line-based approach of
Comparator brings serious comparison
limitations in the face of SCOʹs assertion of code
“mungingʹ”.

5. A Lexical Approach to Code 
Comparison

Eric Raymondʹs Comparator tool (with its
use of hashes) inspired me to design my own C
code comparison tool. Dissatisfied with the line-
based approach, I wanted to construct a tool
which would permit non-UNIX source code
holders to verify or disprove SCO’s assertion of
code copying from UNIX into Linux. To be
useful, the comparison tool would need to meet
these requirements:

• The tool must detect the rearrangement of
source code, even if the rearrangement is not
line-by-line.

• The tool must provide an exportable code
representation which does not disclose the
original source code, so as to allow others to
verify any code comparison.

• The tool must be reasonably fast: O(n2) or
better where n is the number of lines of
source to be compared.

• The tool should be able to detect the
renaming of variables and functions to some
extent.

• If possible, the tool should detect some non-
literal code copying, such as the use of basic
algorithmic elements to perform a task
(loops, if/else or case statements).

Requirement #1 rules out a line-based
approach. Instead, for my Ctcompare tool I chose
a lexical approach to code comparison where

each C source file is broken into a list of tokens
or lexemes3, and then the two lists of lexemes are
compared for any similarity.

5.1 Compiling the Code Does Not 
Work

C source code is normally converted by a
compiler into a “parse tree” representation for
semantic analysis before it is then converted into
an equivalent low-level code. One might
consider the comparison of two parse trees to be
a suitable approach, but in practice this tends to
fail for many reasons.

C code is usually processed by the C pre-
processor before being passed to the compiler.
Different systems will have distinct sets of
header files. Macro and structure definitions will
differ between systems, thus rendering the parse
trees for even the same program different.
Programs themselves often use pre-processor
directives to omit sections of code at compile
time (#ifdef … #endif), thus removing some
source code from comparison analysis. Finally,
any bugs or misfeatures in the source code may
prevent a full parse tree from being constructed,
again removing some source code from
comparison analysis.

A full semantic parse tree, therefore, is not
suitable for code comparison. This is why I chose
to break each C source file into a list of lexemes.
At the same time, the source files would not be
passed through the C pre-processor, to prevent
any loss of source code.

5.2 Modifying the Lexical Analyser
By taking a lexical approach and excluding

the pre-processor, existing C lexical analysers
could not be used as they all assume that pre-
processor directives will have been removed. To
overcome this, I chose an Open Source C lexical
analyser, cslang.l from the CSlang program by
Tudor Hulubei, and modified it to deal with the
following pre-processor directives:

#[ \t]*define
#[ \t]*elif
#[ \t]*else
#[ \t]*endif
#[ \t]*error
#[ \t]*ifdef
#[ \t]*if
#[ \t]*ifndef
#[ \t]*include
#[ \t]*line
#[ \t]*pragma

3. Lexeme: A minimal lexical unit of a language. Lexical
analysis converts strings in a language into a list of
lexemes.[12]



AUUG 2004 - Who Are You?

58 Comparing C Code Trees

#[ \t]*undef
#[ \t]*warning

6. What Tokens to Export?
The modified C lexical analyser knows about

100 separate C language tokens. The first version
of Ctcompare simply tokenised each input file
and exported a token stream, with a byte
representing a single token. Comments were
excluded from the output, and line breaks were
kept but not used in code comparison. For
example, the C code fragment
void print_word(char *str)
{
  char *c;
  c=str;
  while ((c!='\0') && (c!=' ')) putchar(c++);
  putchar('\n');
}

would be represented by the token stream

VOID IDENTIFIER OPENPAREN CHAR
MULT IDENTIFIER CLOSEPAREN LINE

OPENCURLY LINE

CHAR MULT IDENTIFIER SEMICOLON
LINE

IDENTIFIER EQUALS IDENTIFIER
SEMICOLON LINE

WHILE OPENPAREN OPENPAREN
IDENTIFIER NOT EQUALS CHARCONST …

However, this loses too much semantic
information, allowing the code fragment to be
seen as “identical” to
void do_junk(char *g)
{
  char *c;
  c=g;
  while ((c!='q') && (c!='f')) atoi(g++);
  sqrt('?');
}

Some information about the identifiers in a C
file must be exported, but in such a way that the
full source code is not disclosed. A solution like
the following would not be satisfactory to export
proprietary source code:

VOID IDENTIFIER print_word
OPENPAREN CHAR MULT

IDENTIFIER str CLOSEPAREN LINE

OPENCURLY LINE

CHAR MULT IDENTIFIER c SEMICOLON
LINE

IDENTIFIER c EQUALS IDENTIFIER str
SEMICOLON LINE

WHILE OPENPAREN OPENPAREN
IDENTIFIER c NOT EQUALS CHARCONST
ʹ\ʹ …

To avoid this, I then chose to enumerate each
identifier as they appear in the file. In the first
code fragment above, print_word is identifier
#1, str is #2, c is #3 and putchar is #4. This
keeps some contextual information about
identifiers in the file without revealing their
names.

This has been since improved upon in the
current version of Ctcompare. 16-bit hashes of
each identifier and constant are now stored in
the token stream. The hashes obscure the actual
identifier names, but permit the detection of
identifier name reuse in two different code trees.

7. 1st Implementation: Proof of 
Concept

With the lexical analysis and token stream
exporting done, it was time to move to the actual
comparison of token streams. The first code
comparison implementation was proof of
concept:

• Take two tokenised streams, and treat them
as “strings”.

• For each string in the first stream, find all
matching strings starting with the same
token in the second stream.

This brute-force implementation is O(n×m),
where n & m are the string lengths. It was also
slowed down by dealing with the “LINE” tokens
embedded in the input streams, and by poor
loop design. The implementation unfortunately
would miss some matches due to false skipping.
Consider the following two strings:

HELLOTHEREHOWAREYOU?
WHATCELLOBEWARELOTHERE?

Here (H)ELLO matches (C)ELLO, but the
program should not then skip forward to
THERE, as (L)LOTHERE matches (E)LOTHERE.
There were many false matches due to the initial
choice to omit identifier values, and due to
common C features such as:

#include < word . word >
#include < word . word >

and

int id [ ] = ( num, num, num,
     num, num, num, num, ...

The next version was modified to include the
enumeration of identifier values and a run-time
switch to ignore C pre-processor directives in the
input streams. The bottom 16-bits of numeric
constants were encoded into the token stream to
reject non-matching numeric constants.
However, even with these changes there were
still too many false matches on common C
constructs such as



AUUG 2004 - Who Are You?

Comparing C Code Trees 59

for (d=0; d < NDRV; d++)

and

for (i=0; i< j; i++)

where NDRV is a constant defined at the top of
the file or elsewhere, and j is a local variable.

8. Code Isomorphism
By recording contextual information about

identifiers and constants (by enumerating them
in order of appearance, or by hashing their
value), we can detect if two code fragments are
isomorphic. Code which is isomorphic can be
detected if we can see a 1-to-1 relationship
between identifiers and constants.

Take, for example, the following two code
fragments.

int maxofthree(int x, int y, int z)
 {
   if ((x>y) && (x>z)) return(x);
   if (y>z) return(y);
   return(z);
 }

int bigtriple(int b, int a, int c)
 {
   if ((b>a) && (b>c)) return(b);
   if (a>c) return(a);
   return(c);
 }

The variable names have been changed, yet
the algorithm is identical. If we record the order
of occurrence of each identifier in each fragment,
we can check to see if there is a 1-to-1
correspondence between them.

Here, we have

Note that there must be a 1-to-1
correspondence in both directions. If a new
identifier q in the first fragment is introduced
which appears to correspond to b, then this ends
the similarity between the fragments as b
already corresponds to x.

The second version of Ctcompare introduced
the enumeration of identifiers, the encoding of
numeric constants and code isomorphism. To
speed up the comparison, groups of 4 tokens
were joined to make 32-bit integers, and integer
comparisons were used to reduce the cost of
token comparison. Unfortunately, this only took
effect once the beginning of a matching “string”

was found; byte-by-byte tokens were required to
find the beginning of a match. The initial
isomorphism code was buggy and complicated;
the actual solution turned out to be very elegant.

9. The Rabin-Karp Comparison 
Algorithm

While the second version of Ctcompare met
four of the five design requirements outlined in
Section5, it was too slow. The code had to
perform an O(n×m) search to find the beginning
of a matching “string”, and then had to compare
consecutive tokens to determine the length of the
matching run.

In practice, runs of matching tokens below a
certain length can be discounted. If 2 consecutive
tokens are considered a match, then there will be
a large number of if ( and while ( matches.
Structural similarity between two C program
fragments becomes significant around 20 tokens;
therefore, runs shorter than 20 tokens can be
ignored.

This threshold for significant similarity can
be used to improve the program’s performance.
A colleague pointed me at the Rabin-Karp
Algorithm[2] which is ideally suited to this
situation.

With Rabin-Karp, we do not try to find the
beginning of a matching token “string” if there is
a similarity threshold m. Instead, we start at the
beginning of the two input streams, and
calculate hashes of the first two token runs of
size m. If the hashes match, then we have found
a possible matching token run. If the match fails,
we shift by 1 token in the second input stream
and repeat the process. The essential ingredient
here is a rolling hash function that is O(1) to shift
down 1 token, e.g. for the input string
“carousel”, calculating hash(“arous”) from
hash(“carou”) is easy.

The third implementation of Ctcompare uses
Rabin-Karp to find potential code matches; we
ignore identifier hash values and numeric
constant values here for speed. This produces a
set of possible code matches. This is not
excessively bad, as Rabin-Karp will produce
hash collisions anyway.

Once a possible code match is found, it is then
passed to the isomorphic comparison test to find
possibly longer runs of matching tokens, or to
disprove the ‘match’ found by Rabin-Karp.

We also keep track of matches that have been
found, so that we don’t report smaller matches in
the same area, e.g. “HELLO” matches “HELLO”,
but we can ignore the fact that “ELO” matches
“ELO”. This makes the third version of

Identifier Tag Tag Identifierq

x id1 ⇔ id1 b

y id2 ⇔ id2 a

z id3 ⇔ id3 c



AUUG 2004 - Who Are You?

60 Comparing C Code Trees

Ctcompare about 8 to 16 times faster than the
brute-force approach.

10. Validating the Lexical 
Approach

In the USL vs. BSDi court case in the 1990s,
USL alleged the existence of significant amounts
of 32V code in the Net/2 distribution from the
University of California, Berkeley, which had
been released under a BSD license. Kirk
McKusick filed a deposition in the case in which
he stated:

I have found only 56 lines of code in five kernel
files that appear to match lines of code in 32V.
These 56 lines are out of the total of 539 source
files and 230,995 lines of source code in the Net2
kernel. The files in which I have found matches are
discussed below. …

There are 358 lines of text in the Net2 ufs/
disksubr.c file. Conservatively, fourteen of
these 358 lines of source code in ufs/
disksubr.c are the same as lines in sys/
dsort.c from 32V. …

There are 697 lines of text in the Net2 ufs/
ufs_inode.c file. Being conservative, nine of
these 697 lines of source code in ufs/
ufs_inode.c are the same as lines in sys/
iget.c from 32V. …

There are 592 lines of text in the Net2 kern/
subr_prf.c file. Generously, four of the 592
lines of source code in kern/subr_prf.c are
the same as lines in sys/prf.c from 32V. …

There are 403 lines of text in the Net2 kern/
kern_exit.c file. Only three of the 403 lines of
source code in kern/kern_exit.c are the
same as lines in \texttt{sys/sys1.c}. …

There are 1863 lines of text in the Net2 ufs/
ufs_vnops.c file. Being generous, 26 of these
1863 lines of text in ufs/ufs_vnops.c match
code in 32V.[6]

The third version of Ctcompare finds all but 7
of these lines: most of the missing lines are
singles or doubles that fall below the threshold
of 20 tokens. The total run time on a 2GHz
Pentium is 50 seconds. However, the comparison
finds several other runs of similar code which
were not found by McKusick:

Net/2
if (bswlist.b_flags & B_WANTED) {

  bswlist.b_flags &= ~B_WANTED;

  thread_wakeup((int)&bswlist);

}

32V
if (bfreelist.b_flags&B_WANTED) {

  bfreelist.b_flags &= ~B_WANTED;

  wakeup((caddr_t)&bfreelist);

}

11. Final Comments on 
Ctcompare

The development of Ctcompare follows the
paradigm: Write it to work, then write it to work
correctly, then write it to work correctly and fast.
The lexical approach chosen is a good balance
between the fast line-by-line comparison and a
more awkward fully-semantic analysis. The
Rabin-Karp algorithm is superb at finding
possible matches, which are then filtered
through the isomorphic comparison: the
combination of the two is quite elegant. To
preserve proprietary code confidentiality, names
of identifiers and the full value of numeric
constants are not revealed; at the same time,
enough context is provided to significantly
reduce the number of false positives found.
Regardless of all the above, any comparison of
millions of lines of code will still be O(n×m) and
thus slow.

To date, no comprehensive comparison of
Linux versus System V or UnixWare source code
has been conducted by Ctcompare, as I have yet
to find someone who has access to the latter and
who will send me a token stream. Token streams
for some early versions of System V have been
provided by members of the Unix Heritage
Society[11]. While they have not revealed any
UNIX code in Linux, the token streams have
been compared with earlier version of the UNIX
source code. This has revealed that several of the
AUSAM modifications to UNIX4 done in the
1970s by UNSW were still in System V in the
early 1990s.

Ctcompare version 1.3 is available at http:/
/minnie.tuhs.org/Programs/. It includes
a collection of tokenised source trees, including
several System V releases. Overall, it consists of
1,000 lines of C, 100 lines of header files and 250
lines of lex source.

References
[1] A. Bouard, Interview with Darl McBride,

Nov, 2003, http://www.01net.com/article/
220196.html

4. AUSAM was a modification to 6th Edition UNIX done
at UNSW in the 1970s to make the system more robust
and to support more simultaneous users.



AUUG 2004 - Who Are You?

Comparing C Code Trees 61

[2] D. Ellard, The Rabin-Karp Algorithm, Jul,
1997, http://www.eecs.harvard.edu/
~ellard/Q-97/HTML/root/node43.html

[3] G. J. Kirsch}, The Changing Roles of Patent
and Copyright Protection for Software, Apr,
2000, http://www.gigalaw.com/articles/
2000-all/kirsch-2000-04-all.html

[4] G. Lehey, SCO’s evidence of copying between
Linux and UnixWare, Jan, 2004, http://
www.lemis.com/grog/SCO/code-
comparison.html

[5] D. Marti, SCO to Reveal Allegedly Copied
Code, May, 2003, http://
www.linuxjournal.com/
article.php?sid=6877}

[6] M. K. McKusick, SECOND
DECLARATION OF DR. KIRK MCKUSICK
IN SUPPORT OF THE REGENTS OF THE
UNIVERSITY OF CALIFORNIAʹS AMICUS
BRIEF RE MOTION FOR PRELIMINARY
INJUNCTION, Jan, 1993, http://
minnie.tuhs.org/UnixTree/Net2Kern/
930119.mckusick.decl.2

[7] B. Perens, Analysis of Linux Code that SCO
Alleges Is In Violation Of Their Copyright and
Trade Secrets, Aug, 2003, http://
www.perens.com/SCO/
SCOCopiedCode.html

[8] E. S. Raymond, Comparator and Filterator,
Sept, 2003, http://www.catb.org/~esr/
comparator/

[9] E. S. Raymond, SCO’s Evidence: This
Smoking Gun Fizzles Out, Aug, 2003, http://
www.catb.org/~esr/writings/smoking-
fizzle.html

[10] The SCO Group, Original Complaint in TSG
vs IBM, Mar, 2003, http://sco.tuxrocks.com/
Docs/IBM/complaint3.06.03.html

[11] W. Toomey, The Unix Heritage Society, http:/
/www.tuhs.org

[12] Definition of Lexeme, On-line Computing
Dictionary, Apr, 1996, http://
www.instantweb.com/foldoc/
foldoc.cgi?lexeme



AUUG 2004 - Who Are You?

62 Comparing C Code Trees


