
AUUG 2004 - Who Are You?

Achieving Parallelism ‘easily’ through Pshell – Architecture and Overview 135

Achieving Parallelism ‘easily’ through Pshell –
Architecture and Overview

Daniel F. Saffioti
School of Information Technology and Computer Science (SITACS)

University of Wollongong

<dfs@cs.uow.edu.au>

ABSTRACT
Communications and the scheduling of tasks are the two most important issues of

parallel programming on clusters. Over time, various parallel computing programming
models such as remote threads, transparent process migration, message passing,
distributed shared memory and optimizing parallel compilers have emerged, assisting the
programmer develop applications, which can work seamlessly in such environments.
Considerable research has been done to optimize these models, which typically have large
communications overheads, resulting in a detrimental effect on performance. In addition
to this, their acceptance has varied by virtue of the fact that each has introduced new
problems with reference to portability, scalability and most importantly usability.
Sometimes these problems completely violate the underlying notion of such computing.

To overcome these issues Pshell, which provides transparent scheduling and
communication of jobs between disparate hosts, has been developed. Pshell is the ‘glue’ for
producing high performance parallel applications, which can work securely, and efficiently
in heterogeneous environments. It represents a major shift in traditional parallel
programming environments because it is a language using the syntax of the Bourne Shell
sh(1). The Bourne shell process and communications models can easily be extended to
parallel computing environments using the concurrent programming model.

This paper will examine the evolution of cluster computing and identify where
deficiencies lie in current programming models, providing a justification for simple
languages whilst providing the reader with an understanding of the Pshell programming
environment. In addition to this the paper illustrates how such a language can be used to
ease the process of writing parallel applications and to overcome some of the limitations
inherent in traditional programming models without scarifying performance.

1. Introduction to Cluster
Computing & Programming
Models

High Performance computing initially
consisted of large machines in a single room. The
machine would typically have a number of
central processing units and a high-speed shared
memory interconnect. Such machines included
the Silicon Graphics Origin 2000 or Sun
Enterprise 10000. Over time a number of
configurations for such infrastructure have been
seen. Most high performance computers of this
type are costly and difficult to gain access to.

Beowulf clusters are the aggregation of
commodity computers using network
interconnects. The Beowulf cluster provides the
user with the illusion of a single computer, even
though it is composed of several or even
thousands of nodes. This illusion is created
through software. At NASA, Becker designed
the original Beowulf cluster using 16, 80486 DX

CPU’s connected to one another using a network
switch (Becker, Merkey, Ridge, Sterling, 1997).
This infrastructure sustained performance of
74Mflops. Later incarnations of such clusters
were based on the same concepts but used
Pentium class CPU’s. These clusters yielded
performance in excess of 2.4Gflops. The Beowulf
cluster suddenly made it feasible to address
computationally expensive problems in an
environment that was economically viable for
many organizations.

First generation clusters were clumsy. Ferri
and Otero describe Beowulf cluster computing
as initially having a number of stumbling blocks
(Ferri, Otero 2002). These authors focussed on
issues of scalability, software support for
heterogenous nodes and the costs associated
with the configuring of individual nodes. More
importantly however, first generation Beowulf
clusters did not provide the user with the
impression that they were using a single
computer. Such clusters were clumsy both to use
and to administer.

AUUG 2004 - Who Are You?

136 Achieving Parallelism ‘easily’ through Pshell – Architecture and Overview

Second generation Beowulf clusters emerged
during the late 1990’s. They retained the same
underlying communications infrastructure as
their predecessors but offered a number of
advances in management tools and process
space distribution. Management tools such as
OSCAR emerged. OSCAR is a ‘software stack’,
which contains all the software necessary to
configure and manage clusters (Ferri 2002). The
OSCAR software stack includes an operating
system (typically open source), administration
tools, job scheduling software such as PBS
(Portable Batch Scheduler) (Ferri 2002) and
conventional multi-host programming libraries
such as PVM (Parallel Virtual Machine). To date
OSCAR remains popular with cluster
administrators and users. It represents a major
turning point in the development of such
technology.

Other work undertaken in the development
of second-generation cluster environments
included the introduction of distributed process
spaces, to make the collection of nodes appear to
be a single node. One notable example of this is
Bproc, which permits the transparent migration
of processes to hosts in the cluster (Hendricks,
2002). The original concept of a cluster described
by Becker is ‘a collection of commodity
computers connected to one another’ (Becker,
Merkey, Ridge, Sterling 1997). There is no
implication of uniformity in this definition and it
therefore allows that computers within such a
cluster might be of different architectures,
possibly running different operating systems. It
could be argued that second generation cluster
tools do not abide by this idea entirely, largely
due to the fact that process migration is
architecture and platform dependant.

Communications management and the
efficient scheduling of processes are the two
most fundamental issues in cluster computing.
A number of solutions have emerged allowing
processes to be migrated between disparate
hosts. Solutions like Open Mosix (Barak, La’Adan
1998) and Condor (Douglas, Milojicic,
Paindaveinem Wheeler, Zhou 2000) provide
varying levels of transparency and portability.
That said, a number of programming models
have emerged over time, which make it easier
for the user to develop parallel applications.
These models focus on the provision of
appropriate infrastructures, which enable
programmers to create remote processes and
facilitate communications between them.
Additionally, some programming models
provide primitives to enable concurrency and
serialisation of tasks.

The major programming models include
message passing implemented by libraries such

as PVM (Parallel Virtual Machine (Sunderam
1990) or MPI (Message Passing Interface) (The
MPI Forum, 1993). Message passing techniques
allow the creation of remote processes in clusters
and provide infrastructure to facilitate
communications between them. Sunderam
initially proposed PVM in the late 1980’s and it
remains the most accepted and widely used of
the available tools (Sunderam 1990). Other
programming models include distributed
shared memory (DSM) regimes, which allow the
transparent sharing of memory regions between
nodes in a cluster. A number of packages
including Ivy (Li, Huddak, 1989), Mirage (Fleish,
Popek 1989), Quarks (Swanson, Stoller 1998) and
Agora (Bisiani, Forin 1998) have implemented
varying distributed shared memory algorithms.
One of the largest problems inherent in any of
these programming models is the latency
associated with the network interconnects in
cluster environments and the additional
overheads in the protocols involved with
process delegation and the sharing of data.

The loose coupling of the nodes, along with
the overheads imposed by interconnects, causes
programming paradigms based on process
migration, message passing or shared memory
regimes to introduce extra complexities which
do not benefit the end user. In some
programming models, the programmer needs to
articulate in great detail the communications
between the processes – the programmer needs
to be mindful of issues such as deadlock, data
consistency and concurrency. Many
programmers simply do not have the experience
or background to do this effectively.

Whether it be message passing or distributed
shared memory, most of these accepted
programming models for clusters are ‘add ons’
to pre-existing languages. This can be viewed as
a negative aspect for programming because the
syntax of the underlying languages do not
support parallel concepts. This, in turn, requires
greater effort on the part of the programmer.
Lastly, most of the existing programming
models, place additional costs on development
time. More often than not, a programmers needs
to write a parallel program while keeping in
mind the entry points to a communications or
process library. This can be a cumbersome and
daunting experience.

‘Beowulf economics and sociology are poised
to kill off the other architectural lines – and will
likely effect traditional super computer centres’
(Bell, Gray 2002). This indicates the growth and
acceptance of cluster computing environments
and the major challenge they present to
traditional high performance computing. An
examination of the top five super computers in

AUUG 2004 - Who Are You?

Achieving Parallelism ‘easily’ through Pshell – Architecture and Overview 137

the world illustrates how such computing is
proving popular and successful. Two of these
five super computers defies the norm, being a
Beowulf cluster made up of many dual
processor nodes. (Top 500 Super Computers,
2003), these clusters are located at Virginia Tech
and at MCR Livermore. In order for this trend to
continue, new techniques must be devised
which allow users from diverse backgrounds to
access the resources provided by cluster
computing. This is a core goal of grid computing
environments.

The following paper examines a number of
the currently accepted programming models
and illustrates how a scripting language for
cluster environments, based on a concurrent
programming model, can be used to ease the
process of writing parallel applications and to
overcome some of the limitations inherent in
these traditional environments.

2. The Pshell Programming
Environment

Our current research is into the design of a
scripting/programming language called Pshell.
The language is based on a concurrent
programming language model, which allows
programs to be expressed as a series of
interleaved processes. Each process contributes
to an overall solution of a problem (Harrison
2002). Hoare devised this original programming
model concept in his Communicating Sequential
Processes paper (Hoare 1978).

The Pshell language is also based on the
concepts presented in the P3L language. P3L is a
high performance language initially designed
for transputers, which utilises a series of
communicating sequential processes (Danelutto,
Di Meglio, Orlando, Pelagatti, Vanneschi 1992).
The processes have clearly defined inputs and
outputs, which can be derived or used by other
processes. Processes execute concurrently, using
built in constructs such as farms and pipelines.
This, in turn, provides a simple programming
model that does not require the programmer to
articulate all communication flows in the
system.

Harrison has demonstrated the success of
such languages in modelling problems. His
ʹInitial Concurrent Programming Languageʹ
illustrates how problems can be decomposed
and expressed as a series of communicating
processes. He argues that this is an excellent
teaching language as it allows users to clearly
articulate data flows, which form the basis of
functions (Harrison 2002). The concurrent
language paradigm is suitable for the resolution
of many of the issues in parallel programming.

The problems associated with parallel
programming are largely due to
communications and the distribution of
processes. The underlying nature of the
concurrent programming model is believed to
simplify the process of writing parallel code by
eliminating the need to express every aspect of
process scheduling and communications.

2.1 Rationale behind the
development of the Pshell
Programming Model

The design of the Pshell programming
language differs from that of a number of other
programming languages. This is largely due to
its design and syntax. Pshell permits the
execution of Pshell code on heterogenous hosts
using syntax similar to that of the Bourne shell.
The beauty of the language lies in its tying
together of ideas which have existed separately
in the parallel computing and operating system
fields for some time. An example of this includes
distributed shared memory.

Current programming models for cluster
environments include message passing, shared
memory and process migration techniques.
Pshell specifically aims to overcome many of the
limitations of current programming models for
clusters.

a) Complexities in the software development
process; in other words, the linking of shared
objects as required by libraries such as PVM,
MPI and Quarks. This takes away precious
time from the programmer, which can be
better spent writing code.

b) The complexities in expressing
communications and interactions within
programs. For example in environments
such as PVM and MPI a programmer needs
to clearly articulate the data flows between
different threads of execution. In distributed
shared memory environments the programs
need to express how data integrity is
maintained. These environments typically
provide a number of low-level primitives to
control the flow of data.

c) The homogenous nature of such
programming models conflicts with the
ideas central to the Beowulf cluster concept.
Programming models such as PVM, MPI and
DSM all function best in clusters of
homogenous nodes. Their performance and
usefulness varies in heterogenous
environments but, typically, degrades to
some degree. This is an unacceptable feature
for clusters and future grid computing
environments as they tend to be made of

AUUG 2004 - Who Are You?

138 Achieving Parallelism ‘easily’ through Pshell – Architecture and Overview

computational elements of different
architectures and capabilities.

Many distributed shared memory regimes
simply do not work in heterogenous
computing environments due to differing
page sizes or kernel implementations
(Carter, Khandekar, Kamb 1995). To further
illustrate this point, a number of the process
migration technologies in current
widespread use do not scale well to
heterogenous clusters. This is due to the
underlying requirements in operating
system kernels. Open Mosix is an excellent
example of a process migration technology,
which requires a ‘patch’ to the Linux kernel.

d) The lack of scalability and reliability in such
models is an issue which needs to be
resolved.

For example the programming model
offered by Open Mosix tends not to scale with
large clusters. Protocols used by this
technology have high communications
overheads adversely effecting scalability,
whist the pre-emptive process model (used
for load balancing) affects portability
(Hendriks 2002). If a process in Open Mosix
terminates abnormally there is no
mechanism for it to be restarted – this is a
serious reliability issue. These issues are
particularly important as cluster computing
begins to evolve into grid computing.

e) Environments such as PVM, MPI and many
of the shared memory systems are unaware
of the computing environment in which they
function. It could be argued that such
environments are generally not adaptable to
their environment. They are typically
unaware of latencies in network connections
and the utilisation of resources. This does
not allow the best usage of resources in a
cluster environment. In such programming
models, processes can be allocated to
resources which are busy or have
experienced degraded performance. There
have been several attempts to optimise
PVMʹs performance by making it aware of
the surrounding environment (Hendriske,
Iskra, Overreinder, Sloot, Van Albada, Van
Dan Lindern 2000).

f) There are many legacy applications for
which source code no longer exists. Often it
is important for such legacy applications to
be integrated into parallel programming
environments. Few programming models
currently support the integration of legacy
applications in any way.

2.2 Pshell Architecture and
Implementation.

Pshell is an interpreted language, which uses
an interpreter similar to that utilised by the
Bourne shell. This interpreter allows the
distribution of processes as expressed by a
programmer using conventional shell constructs
such as pipes and redirection. The familiar shell
language has been extended enabling a
programmer to articulate areas of code which
can be parallelised.

Pshell acts as the glue for combining
executables and shell-like code to form parallel
applications. The execution of Pshell code and
the processes it controls can be distributed over
a cluster of computational elements using the
models offered by concurrent programming
languages. The Pshell interpreter is responsible
for identifying which processes can be executed
on a given machine (as such execution is
platform/architecture dependant). It is also
responsible for parsing Pshell script code and
identifying fragments which can be distributed
and executed in parallel. Parallelisation of code
can be explicitly expressed by the programmer
or inferred by analysing the consequences of
operators such as pipelines.

Additionally Pshell enables the sharing of
data using a distributed shared memory model
similar to that used in Agora (Pinherio, Chen,
Dwarkadas, 2000). Data can be shared between
distributed Pshell processes (scripts). The data-
sharing model is typeless, therefore enabling the
programming environment to function on
differing architectures. It is even possible for
executables to inherit variable values.

The following core components of the Pshell
programming model and their interactions
between one another are illustrated in Figure 1.

a) Pshell Virtual Machine (Sand Box).
The virtual machine is responsible for the
execution of instructions as specified by the
interpreter. The virtual machine permits
Pshell code to be executed on any
architecture/platform. This therefore enables
the environment to function in heterogenous
computing environments. In addition to this
the virtual machine provides a mechanism
similar to chroot(3c) which prevents users
from accessing resources beyond the Virtual
Machine. Pshell interpreter instructions are
executed on this virtual machine. In addition
to this the Pshell Virtual Machines keeps vital
performance information about a host e.g.
CPU load, I/O load and Network load. This
information is stored in internal data
structures and can be accessed by other
Pshell constructs through a number of IPC

AUUG 2004 - Who Are You?

Achieving Parallelism ‘easily’ through Pshell – Architecture and Overview 139

facilities e.g. Sockets and Shared Memory.
In addition to doing this, the Pshell Virtual
Machine provides an I/O subsystem to
communicate with spawned processes by
mimicking conventional standard input,
output and error.

b) The Pshell Engine – Bourne Shell Style
Interpreter.
The Pshell interpreter is responsible for
interpreting Pshell script code written by the
programmer and delegates it to appropriate
hosts at runtime. Pshell script code contains
calls to executables written using a number
of languages and possibly for different
platforms. The Pshell scripting language
provides shell-like semantics to ʹglueʹ
together executables and shell-like code. The
Pshell interpreter spawns processes on
remote hosts by using a remote method
invocation technique.

A process would be spawned on remote
hosts when pipelines, calls to executables or
explicit parallelisation requests are made in
the Pshell script. A process can be either a
running Pshell script or an executable built
for a particular target architecture.

The delegation of code/process to remote
hosts is influenced by the semantics of the
language and factors such as CPU
utilisation, network latencies and executable
binary format e.g. ELF executables could
only be executed on a Sparc based machine.
If the interpreter is preparing to execute a
process, the interpreter identifies an
appropriate host to handle it by issuing a
UDP broadcast or multicast which forces all

hosts to respond with state information
managed by the Virtual Machine. The
techniques employed permit dynamic
resource discovery allowing the cluster to
grow and contract in size during runtime.
All this ensures that the programming
environment is aware of the state of the
cluster, which may influence the
performance of a task. There has been
considerable work in optimising PVM for
this very purpose (Hendriske Z, Iskra K,
Overreinder J, Sloot P, Van Albada G, Van
Der Linden F, 2000)

It should be noted that the Pshell Interpreter
and Virtual Machine are one component of
the system. Each node in the cluster would
be running the Pshell interpreter and Virtual
Machine. A Pshell script would typically be
executed on one host and, over the course of
the programʹs execution, other hosts would
be called upon to perform discrete tasks. A
Parent-Child relationship drives the process
model implemented by Pshell. It is similar to
that used in all Unix shells.

c) Pshell Language Constructs and
Infrastructure.

The ideas presented by Hoare (Hoare, 1979)
and Harrison (Harrison 2002) form the basis
of the Pshell language. The language uses
constructs similar to the Bourne shell to
model process delegation and
communications. Pshell code consists of a
number of scripted processes working
together. The language permits the gluing
together of these constructs and enables the
sharing of data between them. In the Pshell
environment executables have clearly
defined inputs and outputs, just as in
concurrent programming languages.
Functions implemented in the shell can also
be delegated to remote hosts. An example of
the Pshell language can be seen in Figure 2.

d) Pshell Performance Daemon.

The Pshell performance daemon provides
real time information to the nodes in a
cluster about the status of each node. This
information is communicated back to the
virtual machine, which use it to delegate
jobs. During the runtime process Pshell
Scripts will query hosts for load – this
information is derived from conventional
network broadcasts. This in turn allows the
cluster to adapt process scheduling in
accordance to how resources such as CPU,
Disk and network are being utilised.

The driving force behind the Pshell
programming model is to provide a highly
portable, scalable and easy to use programming

Pshell Interpreter

Pshell Virtual Machine

perfd

Pshell Interpreter

Pshell Virtual Machine

perfd

Pshell Interpreter

Pshell Virtual Machine

perfd

Pshell Interpreter

Pshell Virtual Machine

perfd

Pshell Interpreter

Pshell Virtual Machine

perfd

Pshell Aware Node Pshell Aware Node

Pshell Aware NodePshell Aware Node

Pshell Process Migration
and State/ Performance
Data

Figure 1: A typical cluster illustrating Pshell’s
architecture.

AUUG 2004 - Who Are You?

140 Achieving Parallelism ‘easily’ through Pshell – Architecture and Overview

environment. By developing a programming
model, which utilises a familiar syntactical base,
process, and communications models, it is
believed simplicity can be achieved in cluster
programming without sacrificing portability
and efficiency. The nature of the programming
environment basically requires a programmer to
associate tasks with processes and express them
in a way that could be executed in parallel. The
programmer need not worry about the
intricacies of communicating information back
and forth. This represents a major improvement
on some of the existing DSM or message passing
technologies.

3. A Sample Application
Consider the example of ray tracing. In order

to operate, a ray tracer requires information
about all objects in the image to be rendered;
geometry data and information about light
sources. Decomposing the final resultant image
into blocks can parallelize this task. The
generation of these blocks can be performed
concurrently.

A user may write an executable called
raytracer that takes command line arguments
indicating the dimensions of the image and
quadrant number. The program produces a data
file consisting of part of the final ray traced
image. When the user prepares to perform such
a task not only do they provide the executable,
geometric and light source data (geometric.dat)
but they also provide a script which explains
how to execute the program and with what
input data. This allows the user to achieve a
degree of coarse-grained parallelism. This script

is written using Pshell. Pshell as described earlier
provides a real time distributed shell
environment. Additionally, other executables
can be provided to do pre/post processing. In
this example another application called merge is
used to combine all the resultant images to
produce the final rendered image (post
processing). Thus we end up with Pshell script
like this;

#!/bin/psh

for quad in 1 2 3 4
do parallel
 cat geometric.dat | raytracer \
 > output.${quad}
done
merge output.* > finalimage

In this particular example, the for loop is
iterated four times. The environment runs all
iterations of the loop in parallel as expressed by
the parallel keyword on remote nodes.

The remote nodes are allocated the process
raytracer with the data and evaluated arguments
(in this case representing the iteration number or
image segment to generate). Each process is
allocated using the scheduling algorithms
described previously, choosing the node with
the lowest CPU and I/O loads. When the remote
nodes finish processing, control is passed back,
to the source to combine the results using the
provided merge program. The merge program
takes the output of each ray tracer. The resultant
image file, finalimage, generated by merge is the
result.

Any program in general can have one or
more arguments passed to it. This argument
processing technique has become common in a
number of other grid/cluster environments such
as Nimrod-G (Giddy, Abranson, Buyya, 2000)
and Apple’s X-Grid (Apple Computer Inc, 2003)
to achieve parallelism. As you can see Pshell
hides the complexity of parallel programming
by allowing users to combine ‘smaller building’
blocks to produce a complete solution. The idea
of joining small programs via input/output to
create larger programs is a core feature of ‘Art of
Unix Programming’ (Raymond, 2003).

4. Limitations
One of the potential issues with the Pshell

programming environment is the lack of
support for floating point arithmetic. Shell
scripting languages such as the Bourne-shell and
C-shell do not support floating-point arithmetic.
Because Pshell is based on these languages, this
limitation is present here. It may be necessary to
write Pshell scripts that require the use of

 # # In for loops, list can be a series of values (variables),
calls to Pshell functions or other executables. Each
iteration of the loop would be distributed to nodes in t
cluster NOTE: No dependant variables are used in the loo

for i in list
do parallel

statement
statement
. . .

done

It should be noted that in the above construct the
distributed processes inherit variables using the
semantics of the sh(1). Executables called can see such
variables but not alter them. Distributed Pshell script
code can modify inherited variables.

parallelisation of pipelines results in the distribution
the processes in the pipline. Pipelines in the pshell
language may invoke functions created by the programmer
Typically the results of a pipeline would be assigned to
variable as illustrated below.

A=`process a | process b | process b | pshell func`

Other operators such as <, > and & have special
meanings in the Pshell environment. For exampe & means
to spawn a background process and detach it. It may
be allocated to any node in the cluster. The parent can
continue execution.

Figure 2: Basic Syntax of Pshell

AUUG 2004 - Who Are You?

Achieving Parallelism ‘easily’ through Pshell – Architecture and Overview 141

floating point arithmetic; in which case future
work on Pshell will be required.

Another limitation of the Pshell programming
environment is the method in which it interprets
the file system space. In this environment, where
the nodes are loosely coupled, the interpretation
of filenames is node-centric – this therefore
means there may be inconsistencies between the
underlying layout of the file system and the
user’s perception. It may be necessary therefore
for nodes to have access to the same files –
providing a consistent view of the overall file
system. It may be unacceptable for the Pshell
interpreter or virtual machine to have access to
other parts of the node’s file system. Future
incarnations of Pshell need to address the need
for a consistent and possibly insulated file
system. A possible solution would be the
development of a sandbox environment, which
allows Pshell-aware nodes to share data and
resources transparently. This would require the
layering of a network file system into the Pshell
programming environment.

Future work on Pshell will focus on
comparing it against the conventional message
passing, process migration and shared memory
regimes. Testing would be focused on micro and
application level benchmarking (Akinlar,
Gueve, Hollingsworth, 2003). Measuring the
efficiency of the Pshell communications
protocols and establishing the types of problems
best suited to this programming model drives
our research. We are currently exploring
techniques, which will help in quantifying the
environment’s performance on particular
problems.

It is often assumed that parallel computing
programming paradigms could readily be
migrated to grid environments. The assumption
being that a grid is essentially a distributed
cluster (Berman, Geoffrey 2003). In reality, this
has proven to be difficult. Grids tend to be
dynamic computing environments with
heterogenous nodes. Latencies in interconnects,
processing power variations, along with
ownership and security issues introduces a new
realm of problems (Baker, De Rouke, Jennings
2003). To date, grids have been used as a
platform to integrate loosely coupled
applications or resources. Just like cluster
computing, the coordination and distribution of
processes is of great importance. However, in
this case, the underlying programming models
simply do not scale. This means that the users of
such environments need to learn new techniques
and processes to leverage services. It is our belief
that the Pshell programming model may fit
nicely into grid environments, because it
provides a platform-neutral programming model.

Grid-computing environments can be
described as having a number of traits
analogous with the power grid. Grids, just like
the power grid, should be dependable, cost
effective, consistent and have pervasive
infrastructures (Foster, Kesselman 1999). This
analogy lies at the core of grid technologies,
which are designed to provide easy access to a
wealth of resources while hiding the underlying
complexity from the user. Currently, grids
exhibit complexities in process distribution and
communications due to the dynamic nature of
resources, ownership, security requirements
and network latencies. The Pshell programming
model may a viable programming environment
for grids by virtue of its simplicity and elegance.
For this to be done, the Pshell environment needs
to be made ‘grid aware’, possibly using an
existing framework such as Globus (Globus
2003).

5. Conclusion

Conventional high performance computing
models, such as super computers, offer tightly
integrated hardware and software solutions. The
move to cluster and grid computing presents a
hardware and software solution which is loosely
coupled. In order to utilise these infrastructures,
elegant programming models must be devised
and used. In cluster environments, software
ensures the coupling of system resources. The
lack of integration typically leads to reduced
performance (Foster, Kesselman 1999) and more
complex models for programming.

The illusion of the cluster as a single machine
is created by a number of programming models,
which provide programmers with the
appropriate primitives and techniques to create
and distribute tasks. In addition to this, these
models provide an infrastructure to share
information. Whether it is writing a parallel
application utilising Quarks or PVM the
programmer needs to have a deep
understanding of the problem and its
interactions with data.

The application of some of the current
software models for cluster computing incur
additional overheads in terms of development
time whilst others produce programs which
have considerable latencies, by virtue of their
lack of understanding of the surrounding
environment and high communications
overheads. Clusters are heterogenous
computing environments and even though a
number of programming techniques exist for
them some of them simply do not appreciate the
potential diversity of infrastructure.

AUUG 2004 - Who Are You?

142 Achieving Parallelism ‘easily’ through Pshell – Architecture and Overview

In this paper, the Pshell scripting language
was discussed. Pshell provides a framework for
‘gluing’ together executables and shell-like code.
The Pshell language provides the ability to
communicate with and delegate code to remote
hosts. Pshell provides the programmer with a
simple syntax, based on the Bourne shell. The
nature of the shell programming language is one
which is suitable for distributed environments,
because it is based on processes and inter-
process communication (IPC). These two aspects
form the core of any cluster program model. The
language allows parallel programs to be
constructed by using ideas from concurrent
programming languages such as ICPL and P3L.

Pshell attempts to overcome many of the
limitations identified in current programming
models without scarifying performance. Our
results show that the performance of Pshell is
comparable to that of other tools such as PVM-3.
In addition to this our results to date suggest that
Pshell performs better then PVM in
environments where the behaviour of nodes
varies and is dynamic. This performance
improvement in Pshell is partially due to the
smarts the interpreter posses. Pshell is a flexible,
easy to use, highly scalable programming model
which eliminates the need for explaining
complex data interactions in process-level code.
In addition to this, it removes the need for
compilation, allows legacy code to be integrated
into parallel applications and creates a highly
adaptable environment. Future work will focus
on further development of the Pshell
programming model and identifying which
problems and environments it is best suited to.
Our belief is that this model will provide
researchers with the power to easily write code
which leverages the power of computational
resources be they are clusters or grids. It is also
our belief that such a tool may be used in tertiary
education to teach the fundamentals of parallel
programming.

References
AKINLAR C, GUVEN E, HOLLINGSWORTH

(2003): Benchmarking a Network of PCʹs
Running Parallel Applications Workshop in
IPCCC98, http://www.cs.umd.edu/
~hollings/talks/ipccc98/ipccc98.pdf.
Accessed 1 May 2004.

APPLE COMPUTER INC, Apple Xgrid, (Online)
http://www.apple.com/acg. Accessed 30
May 2004.

BAKER M, DE ROUKE D, JENNINGS R (2003),
The evolution of the Grid in ʺGrid
Computing: Making the global

infrastructure a realityʹ, New York, Wiley
Press.

BARAK A, LA’ADAN O (1998): The MOSIX
Multi Computer Operating System for High
Performance Cluster Computing. In: Journal of
Future Generation Computer Systems,
4(5):361 – 372. ACM Press.

BECKER D, MERKEY P, RIDGE D, STERLING T
(1997): Beowulf: Harnessing the Power of
Parallelism in a Pile of PCʹs In: Proceedings,
IEEE Aerospace. 1 – 13.

BELL G, GRAY J (2002): What’s next in High
Performance Computing. In: Communications
of the ACM, 45(2):91 – 95. ACM Press.

BERMAN F, GEOFFREY F, HEY T (2003): The
Grid: Past, Present and Future in: Grid
Computing: Making the global infrastructure a
reality, New York. Wiley Press.

BISIANI R, FORIN A (1998): Multilanguage
Parallel Programming on Heterogenous
Machines, IEEETC 37(8):930 – 945. IEEE
Press.

BAKER M, Buyya R, LAFORENZA D, Internet-
Wide Global Supercomputing in: Australian
Unix Users Group 2000 Conference (Enterprise
Security, Enterprise Linux) in proceedings
pp 229–251, Canberra, June 2000.

CARTER J, KHANDEKAR D, KAMB L (1995):
Distributed Shared memory: Where we are and
Where we Should be Headed. In: Proceedings of
the 5th Workshop on Hot Topics in Operating
Systems, IEEE, 5:119 – 122. IEEE Press.

DANELUTTO M, DI MEGLIO R, ORLANDO S,
PELAGATTI S, VANNESCHI M (1992): A
Methodology for the Development and Support
of Massively Parallel Programs In: Future
Generation Computer Systems, 8:205 – 220.

DOUGLAS F, MILOJICIC D, PAINDAVEINE Y,
WHEELER R, ZHOU S (2000): Process
Migration In: ACM Computing Surveys,
32(3):241 – 299. ACM Press.

FERRI R, OTERO G (2002): The Beowulf Evolution,
in Linux Journal, 2002:100. IEEE Press.

FERRI R (2002): The OSCAR Revolution, in Linux
Journal, 2002:98. IEEE Press.

FLEISH B, POPEK G (1989): Mirage: a Coherent
Distributed Shared Memory Design. In:
Proceeding of the twelfth ACM symposium on
Operating System Principles, New York,
12:213-223. ACM Press.

FOSTER I, KESSELMAN C (1999): Computational
Grids in The Grid: Blueprint for a new
computing infrastructure, Morgan Kaufman,
San Francisco.

AUUG 2004 - Who Are You?

Achieving Parallelism ‘easily’ through Pshell – Architecture and Overview 143

Globus: The Globus Framework, Globus
Software Foundation, http://
www.globus.org. Accessed 1 May 2004

HARRISON, C (2002): ICPL: An initial Concurrent
Programming Language In: SIGCSE Bulletin
34(4):101 – 105. ACM Press.

HENDRIKIS E (2002): Bproc: The Beowulf
Distributed Process Space In: Proceedings of
the 16th International Conference on
Supercomputing, New York, 16:129 – 136.
IEEE Press.

HENDRISKE Z, ISKRA K, OVERREINDER J,
SLOOT P, VAN ALBADA G, Van Der
Linden F (2000): Implementation of Dynamite
– an Environment for Migrating PVM Tasks,
In: ACM SIGOPS Operating System Review,
34(3):40 - 55. ACM Press.

HOARE C (1978): Communicating Sequential
Processes, In: Communications of the ACM
21(8):666 – 667. ACM Press.

LI K, HUDDAK P (1989): Memory Coherence in
Shared Virtual Memory Systems, In: ACM
Transactions on Computer Systems, 321 – 359.
ACM Press.

PINHERIO E, CHEN D, DWARKADAS S (2000):
S-DSM for Heterogenous Machine
Architectures In: Second Workshop on Software
Distributed Shared Memory, United States, 1
– 7. IEEE Press.

RAYMOND E, “The Art of Unix Programming,
Addison Wesley Press, 24 – 27, Boston,
2003.

SUNDERAM VS (1990): ʹPVM: A Framework for
Parallel Distributed Computingʹ In:
Concurrency Practice and Experience, 2(4):315
– 339, ACM Press.

SWANSON M, STOLLER L, CARTER J (1998):
‘Making Distributed Shared Memory
Simple, Yet Efficient’. In: Proceedings of the
3rd International Workshop on High-Level
Parallel Programming Models and Supportive
Environments, Washington, United States, 2
– 13.

THE MPI FORUM: (1993) MPI: A Message
Passing Interface, In: Proceedings of 1993
ACM/IEEE Conference on Supercomputing,
Portland, United States. 878 – 883, ACM
Press.

Top 500: Top 500 Super Computer Sites, http://
www.top500.org. Accessed 1 May 2004

AUUG 2004 - Who Are You?

144 Achieving Parallelism ‘easily’ through Pshell – Architecture and Overview

