
AUUG 2004 - Who Are You?

Scalable Remote Firewalls 33

Scalable Remote Firewalls
Michael Paddon, Philip Hawkes, Greg Rose

Qualcomm

<mwp@qualcomm.com>, <phawkes@qualcomm.com>, <ggr@qualcomm.com>

ABSTRACT
There is a need for scalable firewalls, that may be dynamically configured by the

network nodes that they service. While modern stateful filtering techniques are good at
dealing with established traffic flows, the scalable classification of other packets is a less
researched problem. A novel method for scalable packet classification on arbitrary criteria
is proposed that addresses this requirement. The classifier supports dynamically updatable
policies comprised of sequence insensitive rules. Experimental data is presented that
demonstrates efficient and scalable performance with large policies. The classifier is
therefore suitable for use in scalable remote firewalls.

1. Rationale
Traditionally, firewalls have been used to

protect relatively small networks from the world
at large. Over the last few years, as “personal
firewalls” have become common, the trend of
protecting smaller domains with finer grained
policy has reached its logical conclusion. The
security benefits of this evolution have generally
been positive: improving the configurability,
utility and (in the case of mobile devices)
portability of firewalls.

A fundamental economic assumption
underlying the “every node is a firewallʹʹ model
is that the cost of delivery of unwanted packets
is negligible. This assumption is not always true.
In general, any link for which demand exceeds
(or is likely to exceed) available bandwidth
exhibits non-trivial packet delivery costs. We call
these expensive links. Typical examples might be
low speed or heavily congested channels.

One interesting class of expensive links is
those constrained by intrinsic physical
properties. For instance, wireless transports
utilise radio spectrum resources that are strictly
limited in availability. One can always lay more
fibre between two points, but wireless
bandwidth is far less elastic. As a consequence,
wireless spectrum is regarded as a precious
resource, as attested by high licensing costs in
most jurisdictions.

There exists, therefore, an economic
imperative to prevent unwanted packets from
traversing expensive links. This implies a
requirement for centralised firewalls at link
ingress points, that enforce desired traffic policy.
Because an expensive link may provide
connectivity to an unbounded number of nodes,
such firewalls must scale well and gracefully
support large populations.

In order to be effective, these firewalls need
not be perfect; any significant reduction in
unwanted traffic is a net gain. However, the
more precisely the enforced policy fits the actual
traffic requirements of legitimate node
population, the more effective it will be.
Therefore, these firewalls should permit remote
ad hoc updates to policy (from authorised
sources).

One common class of firewall is the packet
filter: a technology which passes or blocks
packets, but otherwise leaves traffic flows
unperturbed. At the core of every packet filters is
a mechanism which classifies packets according
to a supplied policy. This paper describes a novel
packet classification technique that is highly
scalable and supports dynamic policy updates.

2. Problem Statement
Existing stateful packet filters (such as

OpenBSD’s pf[5]) possess scalable mechanisms
for processing packets that belong to established
traffic flows. Packets that do not belong to an
established flow are classified according to a
policy which is expressed as a set of rules. Rules
are generally processed in sequence in order to
assess each packet. This approach exhibits
complexity, relative to the size of the rule set.

Some packet classifiers employ optimisation
techniques to their rule sets in order to speed up
packet processing. Facilities for early
termination of rule processing under specified
circumstances are common. A more
sophisticated example is pfʹs skip-steps, which
enable predictive skipping when contiguous
rule blocks could never match a packet. The
effect is much like constructing a tree. Such
techniques can be very effective if the rule set is
highly ordered and exhibits strong commonality
in rule criteria. In a highly dynamic

O N()

AUUG 2004 - Who Are You?

34 Scalable Remote Firewalls

environment, where there are ongoing
incremental updates to the rule set, this is not
generally true.

Traditionally, classifier rule sets tend to be
quite static in nature, and are often updated via
a manual process. This is more a matter of
convention than technical constraint.
Nevertheless, since extant classifiers typically
exhibit sequence dependent behaviour, it is
generally difficult to insert and remove arbitrary
rules from a policy without unwanted or
unintended side effects.

Nodes protected by a centralised packet filter
may wish to extend service (typically by
listening for packets that initiate a flow) at any
time. Similarly, they may wish to retract
heretofore offered services. This is consistent
with the internet end-to-end model. If the
maximum number of unwanted packets are to
be blocked while allowing ad hoc service
extension and retraction, then the filtering policy
must be dynamically updated by nodes as
changes occur.1

There exists, therefore, a need for a packet
classifier that expresses policy using sequence
independent rules. Rules must be able to be
dynamically inserted into, or deleted from, the
policy at any time. Classification performance
must be scalable and exhibit fundamentally
better performance than .

3. Prism Packet Classification
 Our packet classification technique operates

by representing each packet as a point and each
rule as a prism in -dimensional space. Fast
matching of packets against prisms is achieved
by using a spatially indexed data structure.

3.1 Packet Features
 We consider a packet to possess a

predetermined set of interesting features for
the purposes of classification. Each feature must
be defined so that it is representable by a number
that falls within a predetermined range. Features
may be represented by floating point numbers,
but are most often integral in nature. Distinct
features need not be orthogonal.

For instance, the source and destination
addresses of an IPv4 packet may be used directly
as features as they are each representable by an
integer with a predetermined range of

(in the case of IPv6). The upper layer
protocol number is another example of a typical
feature, being an integer in the range of .
In general, any information in a packet may be
used either directly as a feature, or to
algorithmically construct a feature. In either
case, we say that the information generates the
feature.

Information that may or may not be present
in the packet may also be used to generate
features. Typical examples of such information
would be optional data (such as IPv4 header
options or IPv6 optional headers). Information
from the packet payload may also be used to
generate features, such as fields from
encapsulated upper layer protocol headers.
Typical examples of such information would be
TCP or UDP ports numbers, and ICMP types
and codes. When such optional information is
not present, the generated feature must take on a
predetermined value; in other words, even if the
information is not present, the feature is still
defined.

Features may also be generated using
information recalled from previous packets. In
other words, feature generation may be stateful.

3.2 Feature Vectors and Prisms
Each packet may be represented as a fixed

length vector , consisting of feature values :

Each describes a point in an -dimensional
affine feature space. We will call this space .
The precise set of features chosen as the axes of

 depends on the classifying application’s
requirements.

An axis-aligned -dimensional cuboid in
 may be defined by specifying a contiguous

sub-range for each axis:

We will call these cuboids feature prisms. A
feature prism may be thought of as a
geometrically coherent set of packet
classification criteria.

Prism encloses vector if and only if:

 and ,

3.3 Packet Classification
 Let be an arbitrary set of feature prisms,

forming the rule set of a packet classifier.

Vector matches if and only if:

1. The filter should also have a mechanism (such as keep-
alives) to discover when a node departs the network
abruptly, so that obsolete rules can be elided from the
policy in a timely fashion.

O N()

n

n

0 232 1–[,]

0 2128 1–[,]

0 255[,]

ν n µ

ν µ1 … µn,,〈 〉=

ν n
Φ

Φ

n ψ

Φ

ψ µlow1 µhigh1[,] … µlown µhighn[,],,〈 〉=

ψ ν

µi∀ ν∈ µlowi µhighi[,] ψ∈

µlowi µi µhighi≤ ≤

Ψ

ν Ψ

AUUG 2004 - Who Are You?

Scalable Remote Firewalls 35

, such that encloses

 A packet may, therefore, be binary classified
relative to . The semantics of matching
depends on the application. Matching may
mean that the associated packet is permitted
through the filter. In this case represents a
positive rule set. If is interpreted as a negative
rule set, then a match would result in the packet
being blocked. More complex classification is
possible by matching against a sequence, or
even a decision tree, of distinct .

3.4 Fast Packet Matching
 The efficient determination of whether a

point in -dimensions is enclosed by one or
more regions is a well studied problem, with an
extensive literature. Such techniques are
generally known as spatial access methods
(SAMs). One particularly successful class of
SAM is the R-tree[1] and its many variants such
as R+-trees[2] and R*-trees[3]. A good general
survey of R-trees and related data structures is
given by Manolopoulos et al[4].

R-trees are an extension of the well known
B+-tree data structure, in which the keys are
multidimensional rectangles. Interior nodes
hold the minimum bounding rectangle (MBR)
for each child. Classic R-trees and R*-trees allow
MBRs to overlap, reducing tree size at the cost of
potentially more expensive queries (as multiple
branches of the tree may need to be traversed).
R+-trees, on the other hand, guarantee disjoint
MBRs, which may increase tree size (as keys may
need to be stored in more than one leaf node).
R*-trees are generally regarded as the best
performing of the R-tree family. R-trees are
dynamic data structures, so data may be inserted
and deleted at any time.

A classifier rule set may be represented by
an R-tree whose leaf MBRs are isomorphic with
ʹs elements. Efficient packet matching may

then be achieved via a point query on the tree,
which recursively searches nodes whose MBRs
enclose the desired point until any matching
prisms are found at the leaves. For the purpose
of classification, query traversal may be
terminated as soon as the first enclosing prism is
detected.

A key measure of the performance of a point
query is how many nodes were traversed to
satisfy the query. Predicting the performance of
R-Trees in practice is difficult, and there a few
analytical results in the literature. The worst case
complexity is , where is the number of
nodes in the tree. Best case is where is
the maximum degree of the nodes and the tree is

fully populated. The actual performance is
highly dependent on the contents of the tree.

4. Experimental Data
 Let be the number of prisms and the

number of nodes in a given R-tree. Let be the
number of nodes traversed by a specific point
query. We observe that , since the root
node itself may never be visited if its MBR does
not enclose the point.

 We define a performance metric for
point queries as:

Note that . Since , acts as a
normalised approximation of the proportion of

 searched to satisfy the query.

Our experimental method consists of the
algorithm:

1. Construct a R*-tree by inserting randomly
generated “typical” prisms. Count the total
number of node reads and writes required to
build the tree.

2. Perform point queries, using a random
point from inside each prism.

3. Perform point queries, using randomly
generated “typical” vectors.

4. Calculate for all point queries that
successfully matched a prism.

5. Calculate for all point queries that failed
to match any prism.

We used Hadjieleftheriouʹs free Spatial Index
Library[6] as our R*-tree implementation. The
default node splitting algorithm parameters
were used, including a fill factor of 0.7, a split
distribution factor of 0.4 and a reinsert factor of
0.3.

4.1 Typical Prisms and Vectors
 Our experimental feature space, , is chosen

to contain seven typical packet classification
criteria:

• source address (32 bits)
• destination address (32 bits)
• layer protocol (8 bits)
• ICMP type (8 bits) [ICMP only]
• ICMP code (8 bits) [ICMP only]
• source port (16 bits) [TCP and UDP only]
• destination port (16 bits) [TCP and UDP

only]

ψ∃ Ψ∈ ψ ν

Ψ ν Ψ

Ψ

Ψ

ν

Ψ

n

Ψ

Ψ

O τ() τ

O logdτ() d

σ τ

υ

0 υ τ≤ ≤

ω ρ

ω

υi
i 1=

ρ

∑
ρτ
--------------=

0 ω 1≤ ≤ σ τ∝ ω

Ψ

σ

σ

σ

ω

ω

Ψ

AUUG 2004 - Who Are You?

36 Scalable Remote Firewalls

When constructing a feature vector, features
that are not present in a packet are defined as
zero.

 A typical feature prism is intended to
represent the type of rule that a node offering a
service would generate in order to allow access
to that service. Some services are offered to the
world at large, and others are constrained in
terms of source restrictions. Typical prisms are
defined to be:

• source address (probability): all addresses
(0.8), a random 24 bit CIDR block (0.1) or a
random address (0.1)

• destination address: a random address in the
10.0.0.0/8 block

• upper layer protocol (probability): TCP (0.4),
UDP (0.4), ICMP (0.1) or a random protocol
(0.1)

• ICMP type: a random type [0 if not ICMP]

• ICMP code: a random code range [0 if not
ICMP]

• source port (probability): all ports (0.8), ports
0 to 1023 (0.1) or a random port (0.1) [0 if not
TCP or UDP]

• destination port: a random port [0 if not TCP
or UDP]

Prisms were constructed with edges
extending 0.5 units beyond the minima and
maxima of each feature range.

A typical feature vector is intended to
represent the type of packet that might be
intercepted by a packet filter:

• source address: a random address

• destination address: a random address

• upper layer protocol (probability): TCP (0.4),
UDP (0.4), ICMP (0.1) or a random protocol
(0.1)

• ICMP type: a random type [0 if not ICMP]

• ICMP code: a random code [0 if not ICMP]

• source port: a random port [0 if not TCP or
UDP]

• destination port: a random port [0 if not TCP
or UDP]

4.2 Insertion Performance

 Trees containing varying numbers of prisms
were built, for several values of the maximum
node degree . The total number of node reads
and node writes were observed at the
completion of each tree’s construction. Total

accesses were defined as the sum of the reads
and writes.

Recall that the amortised complexity of
classic B-tree insertion is . Our data
suggests that the insertion cost (in accesses) for

 prisms into our R*-Tree is proportional to
. In other words, a single insertion is

.2 This makes sense; R*-tree insertion,
although more expensive due to a forced
reinsertion strategy, is algorithmically similar to
B-tree insertion. Note that the observed costs are
not necessarily worst case behaviour.
Nevertheless, in practice, insertion appears to
scale well.

 The insertion cost becomes cheaper as the
maximum node degree is increased. However,
large values of create more CPU load in terms
of node searching and splitting, and it is
important to keep below the threshold where
such costs begin to dominate. Our point query
results (below) suggest that the optimal is less
than 64.

4.3 Point Query Performance
 Trees containing varying numbers of prisms

were built, for several values of the maximum
d

reads writes accesses

299 191 490
5428 2685 8113

76821 33131 109952
979299 383959 1363258

11895335 4433011 16328346

reads writes accesses

219 139 358
3598 1876 5474

47809 20749 68558
650885 237571 888456

8109362 2669052 10778414

reads writes accesses

139 107 246
2874 1582 4456

42136 17745 59881
479027 183936 662963

6319883 2001566 8321449

2. Deletion cost is expected to be similar to that of
insertion.

σ

102

103

104

105

106

d 16=

σ

102

103

104

105

106

d 32=

σ

102

103

104

105

106

d 64=

O Nlog()

σ

σ σlog

O σlog()

d

d

d

AUUG 2004 - Who Are You?

Scalable Remote Firewalls 37

node degree . The tree was then subjected to
 point queries, and the metric was

calculated for successful and unsuccessful
matches.

Our data suggests that is roughly

proportional to . It is also useful to examine the

absolute number of nodes visited for a particular
scenario. The following table shows the mean
values for point queries when :

 This is suggestive of a slightly worse than
 cost in terms of node visits for matching

queries (in fact, our lower cost bound is
). We can see that, when , an

average point query visited 8.29 and 0.0308
nodes for successful and unsuccessful matches

respectively. Even with a million rules, the
classifier is capable of efficient operation.

We also note that non-matching queries are
substantially cheaper than matching queries.
This is highly desirable for a packet filter whose
purpose, after all, is to reject spurious traffic as
cheaply as possible.

Our results also show that for , we see
a minimal for both matched and unmatched
packets when . This suggests that there is
an optimal value for for any expected ,
which allows trees to be tuned for their expected
load. Even in the absence of such tuning,
however, performance remains acceptable.

5. Conclusions
 The proposed mechanism exhibits excellent

scalability for both dynamic rule updates and
packet classification. Non matching packets are
assessed particularly quickly, which is a highly
desirable characteristic. Therefore, this classifier
is suitable for the creation of high performance
packet filters that enforce policies with
exceptionally large numbers of rules.

The classifier rules are sequence insensitive,
allowing multiple parties to independently
insert and remove rules without unwanted or
unexpected interactions. This makes the
mechanism eminently suitable to a highly
dynamic environment, where policy is an
amalgam of rules from many sources.

As a consequence of these characteristics, we
believe that our packet classifier is well suited to
the construction of remote firewalls that service
large nodes populations, where the nodes
themselves dynamically update policy. The
enforcement of policy on expensive link is a
typical example of where such a firewall could
be applied.

There are several areas where further
investigation is warranted:

• How does the classifier perform for other
typical scenarios?

• How does varying fundamental R*-tree
construction parameters affect efficiency?

• Do other R-tree variants perform better or
worse? What about more exotic SAMs?

• What are the consequences of defining more
or fewer features? How effective is
classification with statefully generated
features?

d
2σ ω

σ τ ωmatched ωunmatched

102 10 2.00 1–×10 0

103 103 5.30 2–×10 1.46 4–×10

104 1023 1.09 2–×10 3.99 5–×10

105 10235 1.60 3–×10 5.83 6–×10

106 102982 3.90 4–×10 1.45 6–×10

d 16=

σ τ ωmatched ωunmatched

102 5 4.00 1–×10 0

103 49 6.12 2–×10 1.84 4–×10

104 486 6.23 3–×10 2.35 5–×10

105 4736 1.03 3–×10 3.73 6–×10

106 47092 1.76 4–×10 6.54 7–×10

d 32=

σ τ ωmatched ωunmatched

102 3 6.67 1–×10 0

103 23 8.70 2–×10 2.61 4–×10

104 233 1.29 2–×10 4.72 5–×10

105 2304 2.12 3–×10 7.78 6–×10

106 22904 2.73 4–×10 1.03 6–×10

d 64=

ω

1
σ

υ

d 32=

σ τ υmatched υunmatched

102 5 2.00 0

103 49 3.00 9.02 3–×10

104 486 3.03 1.14 2–×10

105 4736 4.88 1.77 2–×10

106 47092 8.29 3.08 2–×10

O σlog()

O σlog() σ 106=

σ 106=
ω

d 32=
d σ

AUUG 2004 - Who Are You?

38 Scalable Remote Firewalls

References
[1] A. Guttman: R-Trees: A Dynamic Index

Structure for Spatial Searching. SIGMOD
Conference 1984: 47-57

[2] T. K. Sellis, N. Roussopoulos, C. Faloutsos:
The R+-Tree: A Dynamic Index for Multi-
Dimensional Objects. VLDB 1987: 507-518

[3] N. Beckmann, H.-P. Kriegel, R. Schneider,
B. Seeger: The R*-Tree: An Efficient and
Robust Access Method for Points and
Rectangles. SIGMOD Conference 1990: 322-
331

[4] Y. Manolopoulos, A. Nanopoulos, A. N.
Papadopoulos, Y. Theodoridis: R-trees
Have Grown Everywhere. Unpublished
Technical Report (2003). http://
www.rtreeportal.org/pubs/
MNPT03.pdf

[5] The OpenBSD Project. http://
www.openbsd.org/

[6] Marios Hadjieleftheriou: Spatial Index
Library. http://www.cs.ucr.edu/
~marioh/spatialindex/

