
AUUG 2004 - Who Are You?

A User Level Networking Infrastructure for Linux 45

A User Level Networking Infrastructure for Linux
Andrew McRae

NetDevices Inc.

<amcrae@netd.com>

ABSTRACT
Currently, most network packet processing occurs within the confines of the kernel in

the Linux system. This reflects the historic nature of a Linux/Unix kernel in that its primary
role was as a network host or end-point e.g a web server, or desktop. However,
considerable effort is being expended to provide a greater level of packet processing on
Linux systems, as more features are required such as tunnelling, encryption, quality of
service etc. Another factor is the growing use of Linux as a gateway or router. Both these
factors rely on a implementing the bulk of the ever-more complex packet processing inside
the kernel itself, mainly for performance reasons, though with the attendant issues of
robustness, ease of programming, scalability etc.

This paper presents an alternative approach to implementing network services within
the kernel itself, and describes a networking infrastructure that attempts to address the
major issues with supporting a sophisticated and extensive packet processing environment
on Linux without sacrificing performance or robustness. This infrastructure (termed
‘NetIO’) is implemented as a kernel module in Linux, but is designed to interact closely
with user level processes in implementing the network services, bypassing the major issues
of kernel limitations such as scalability, robustness, configuration and ease of
programming, yet without suffering the performance limitations caused by kernel/user
process interactions.

1. Introduction
For virtually the entire life of the Internet,

standard CPU systems have been used as not
only end points of communication (the whole
point of the Internet, of course), but as
forwarding and packet processing nodes. Before
routers developed as separate devices with their
own architectures and market, standard
workstations were being pressed into service for
communication gateways. Much of the
popularity of the BSD releases of Unix were
related to the TCP/IP support it provided, not
only as a foundation for host-to-host
communication using the socket paradigm, but
also for acting as a IP packet forwarding
gateway. With the emergence of Linux as a
widely available Open Source Operating system
compatible with (and often sharing code with)
the other BSD based freely available Operating
Systems, there has been much work and
development associated with extending the
networking packet processing facilities that are
available as part of the Linux releases. There
have even been projects dedicated to developing
variations of Linux specifically designed to
perform as routers (such as the Linux Router
Project).

Other projects such as Zebra and XORP
(eXtensible Open Router Project) have
concentrated on the control and routing

facilities, providing implementations for BGP,
OSPF, RIP etc. Typically these systems are
overlayed onto a separate forwarding
abstraction, allowing them to operate on Linux
kernels, or on more dedicated platforms.

Therein lies the major distinction between a
dedicated router and a Linux kernel being used
for packet processing, that typically a router has
been designed with packet processing in mind,
both from a hardware viewpoint, and from the
software architecture viewpoint.

Of course, this has not prevented a large
number of features and facilities that have been
successfully developed and deployed using
Linux and other freely available OS’s.

However, there are still significant
architectural barriers in attempting to
implement many sophisticated packet
processing features using Linux as a base
platform.

This paper describes an architecture that uses
Linux as a platform for a high performance
network packet processing architecture that
attempts to migrate packet handling out of the
kernel and into user processes. In doing so, it
addresses many of the issues that dog existing
implementations of Linux based packet
processing environments.

AUUG 2004 - Who Are You?

46 A User Level Networking Infrastructure for Linux

2. Existing Packet Processing
Methods

Existing examples of packet processing
features that are based on Linux (or other OSʹs)
typically implement the facilities in a variety of
ways:

• As an integral part of the networking
facilities of the kernel e.g the core IPv4
packet processing providing INET socket
facilities.

• Entirely as a loadable kernel module, usually
tightly coupled with the existing kernel
networking infrastructure. Examples are
IPTables, for packet filtering and NAT
processing, or Quality of Service processing.
Often these facilities are programmed via
user level utilities that interface to the kernel
module via system calls, ioctls, or /proc
access.

• As a combination of a kernel module
performing most of the simple packet
processing, with a user level daemon
performing more sophisticated control
functions or exception packet process. An
example in common use is IPSec, where the
encryption of packets is usually performed
in the kernel module, but Key management
and other control protocol processing is
performed in user daemons that then
interact with the kernel modules. Another
example is PPP, where the PPP control
processing can be performed in user space,
but the main PPP encapsulation or handling
is performed as part of a kernel module.

• Completely in user space, where typically a
user daemon will employ a tunnel or tap
driver or interface to redirect packets to the
user space, where the packet processing can
be performed and then the packet written
back to the kernel. An example of this is the
OpenVPN packet, providing a user level
encrypted tunnel VPN that requires no
specialised kernel modules beyond the
standard tunnel interface driver.

Clearly, there are significant advantages to
providing networking applications in user
space, such as:

• Ease of development, where user level
debugging and tracing can be used.

• Robustness, where software error or faults
will not cause kernel crashes or unstable
behaviour.

• Portability, since the kernel-user APIs are
more well known and stable then internal
kernel APIs.

As any kernel programmer can tell you,
trying to debug or develop kernel code as
opposed to user level code can be an order of
magnitude more difficult. So why doesnʹt all
networking processing occur at user space?
Essentially, the problem is one of performance.
Any packet processing that occurs in user space
generally involves a copy of data from the kernel
space to user space for the user process to get the
packet data, and vice versa for delivering the
process packet back to the kernel. This is fine
when the data is being as an end point e.g via a
socket interface, and the user process is

Method Pros Cons

Core kernel • Highly integrated
• High performance
• Easily coupled with existing

kernel facilities

• Difficult to write and debug
• Hard to replace
• Hard to interface to (requires

kernel module) or control
• Kernel bloat
• Robustness

Loadable Kernel Module • Only loaded when required
• High performance
• Easily couple with existing

kernel facilities

• Robustness
• Difficult to write/debug
• Reliant on kernel APIs
• Lack of portability

User Daemon • Easy to write and debug
• Portable
• Easily controlled

• Poor performance
• Not easily coupled with

other features

Hybrid • Good performance
• Better control

• Requires both kernel and
user level development

• Requires good APIs for user
level control

AUUG 2004 - Who Are You?

A User Level Networking Infrastructure for Linux 47

performing some action such as acting as a web
server, or a database transaction server, but if the
action is not end-point orientated, but instead
some kind of network packet processing,
copying the packet data is a high cost operation.
Most network packet processing simply
involves header manipulation rather than
operating on the entire packet, so there is
significant benefit to avoiding a complete copy
of the packet into and out of user space.

There is also a question of interaction with
other network features. On a typical router, there
are many features that can be applied to a packet
as it is being processed through a device, such as
filtering, header manipulation (NAT etc),
classification etc. If each feature were
implemented as a separate user process, the
packet may undergo many kernel-user copies as
it was being processed, significantly degrading
the performance. There is a strong advantage to
tightly coupling associated network packet
processing features, so that the features can
share processing context, and provide a low cost
of handoff to each feature.

So a popular model that has emerged is a
hybrid model, where some level of control plane
or exception processing is performed at user
space, but the core of the packet processing
occurs in kernel modules, to gain performance.
The cost, however, is that more and more packet
processing features are finding their way into
the kernel, causing bloat or robustness issues. A
significant problem here is that the demand for
more complex network features is very strong,
adding to an already long list of desirable
features.

3. Kernel Packet Processing.
A question then arises: Is the kernel the

appropriate place for performing network
packet processing? Clearly, for the original
intent where the host is a end-point in the
network, it is entirely appropriate (and
desirable) that the kernel provide the
communications infrastructure for user
processes i.e the socket paradigm for sending
and receiving network data. And the kernel is
highly suited and tuned to perform this
operation in an efficient and flexible manner.
The significant question that is raised is rather, Is
the kernel a good router? Or is it even desirable
that the kernel perform the level of packet
processing and feature handling that most
routers have?

The premise of this paper is that it is
essentially an undesirable approach to attempt
to make the Linux kernel an efficient and flexible
platform for routing network packets. An

alternative is proposed, that for network packet
processing as a gateway/router requirement, it is
much more desirable to migrate this processing
to user space, and allow the kernel to perform
the role it is best suited for, to act as a supporting
OS infrastructure for the user space applications.
There are a number of reasons why it is desirable
to migrate the packet switching functions out of
the kernel and into user space:

• Scalability - the current kernel infrastructure
is not designed to deal with more than a few
tens of network interfaces at the most (a limit
is currently set at 255 interfaces). The
scalability goals of routers generally need to
take into account highly channelised
interfaces such as multiple T1s and E1s, and
ATM virtual circuits, as well as potentially
large numbers of virtual interfaces for
aggregation and tunneling. Routers are
usually designed to allow scalability to tens
of thousands of interfaces, several orders of
magnitude higher then typical kernels.

• Performance - the kernel packet switching
code is not designed to perform at router-
like speed, but more designed to operate at
lower speeds for high touch functionality. A
typical switching performance goal of mid-
range routers is in the 1-2 million packet-per-
second range, several times greater than can
be achieved using a typical kernel.

• Robustness – kernel code is inherently more
prone to undergoing catastrophic failure in
the event of software error or faults (often
only rectified through a complete reboot),
whereas a user process can be restarted after
it crashes without any system reboot.

• Modularity – whilst kernel modules can be
loaded and unloaded easily, any code that is
loaded into the kernel has to deal with the
fact that it is being linked into a relatively
large and complex image, and consequently
has greater restrictions on the available APIs
etc.

• Licensing – the legal status in terms of the
GPL is less clear for kernel modules, since
they are closely tied to an existing body of
code under the GPL. User level code is more
readily free of specific GPL conditions,
allowing the use of a wider range of
available code modules.

• Ease of programming – it is considerable
more difficult to debug and code a kernel
module rather than a user module, and user
level code can take advantage of the kernel
facilities (such as system calls) to build
cleaner APIs, and also take advantage of the
large range of user level libraries available.

AUUG 2004 - Who Are You?

48 A User Level Networking Infrastructure for Linux

Of course, the challenge is to provide an
infrastructure for user level packet processing
that has the performance advantages of kernel
packet processing, but avoiding the problems
discussed above.

4. NetIO
NetDevices Inc. has developed an alternative

approach to performing network packet
processing, termed the NetIO system.

The NetIO system comprises of a number of
components that interact together to form a
framework for migrating network packet
processing to user space. The aim of this
framework is to provide a alternative (parallel)
packet processing infrastructure, essentially
using the kernel as a foundation for
implementing this framework as an application
on the kernel.

The main components of NetIO are:

1. A memory area that is shared between the
user and kernel space.

2. Network device drivers for interfacing to
physical devices.

3. A psuedo network interface to the kernel

5. User/Kernel Shared Memory
Area

Central to the NetIO system is a shared
kernel/user memory area that is used for packet
buffers and communication queues between
kernel and user space entities.

The shared memory structure is allocated in
kernel virtual memory space using the kernel

vmalloc call, and the user process accesses this
structure by calling mmap on the character
device filename under which the NetIO system
is installed.

The memory structure contains the following
items:

• An array of fixed length buffers used to store
packet data. Each packet buffer (called a
‘nbuf’) is 2Kbytes in length, with a small
portion of reserved space at the start for
some housekeeping information.

• An array of data structures holding
transmission queue lengths for interfaces,
designed for communicating interface queue
lengths to the user process so that Quality of
Service congestion control can be
implemented.

• An array of data words implementing a
FIFO ring buffer, used to pass commands/
data from the kernel to the user process. This
ring buffer is known as the In Queue or InQ
for short.

• An array of data words implementing a
FIFO ring buffer, passing commands/data
from the user process to the kernel. This ring
is known as the Out Queue or OutQ for
short.

• A small number of variables used in the
management of the InQ and OutQ.

This shared memory structure is the primary
mechanism for communication with the user
process. In addition to this, supporting code in
the NetIO module also provides other facilities
such as:

• Initialisation code for the memory structure
elements.

• Kernel device code for representing the
Kswitch module as a character device in the /
dev namespace (called /dev/netio), so that the
user process can access it via mmap and ioctl
system calls.

• A driver based page mapper for allocation of
the pages for the shared memory area.

• Code to interface with the network device
drivers.

• Ioctl handlers for performing various
housekeeping operations and device control
operations.

6. Network Device Drivers
Another part of the NetIO system are the

actual device drivers. This are like any other
device driver, in that they are designed to
interface to physical devices, and manage the

User Processes

Kernel

Sh
ar

ed
 b

uf
fe

rs
 a

nd
 in

te
rf

ac
e

qu
eu

es

Knet0
Kernel

interface
network

Interface drivers

Network interfaces

AUUG 2004 - Who Are You?

A User Level Networking Infrastructure for Linux 49

transfer of data to and from the devices. The
major difference is that the devices are specific to
the NetIO system, and do not appear as network
interfaces in the kernel themselves. The device
drivers interface to the packet buffer pool to
obtain network buffers for receiving packets,
and place message entries on the NetIO queues
to the user process.

Existing network device drivers can be easily
converted to use the NetIO driver interface, by
modifying the allocation of buffers to use the
NetIO buffers rather than the skbuff routines etc.

7. Kernel Network Interface
The question may well be asked, If the NetIO

system is entirely separate from the traditional
kernel network infrastructure, how does it
communicate with this framework? The answer
is that a psuedo network interface is used to
provide a communications path between the
kernel and NetIO:

The intent of the knet interface is to provide a
network interface that then delivers packets to
the NetIO framework from the kernel. Processes
that use a standard socket interface to send
packets will have these packets delivered into
the NetIO framework, where the user
applications that are processing the packets can
then forward the packet onto the appropriate
interface. In a similar fashion, packets being
received in the NetIO framework that are to be
handled locally by any application can be
delivered to the knet interface, and the packet
processed just as if it had been received via a
normal kernel network interface. This allows
any application to transparently connect to the
networking framework provided by the NetIO
subsystem. One way of considering the NetIO
framework is to view it as a virtual router that
connects to the kernel via a single network
interface.

8. User/Kernel Interface
User applications interface to the NetIO

kernel subsystem through a standard device file

that is used to mmap the shared memory are into
the processʹs address space.

Apart from the the packet buffer pool, the
main form of communication is via two FIFO
rings, called the In Queue (InQ) and the Out
Queue (OutQ). Each of these queues are write-
only from one side, and read-only from the
other. The queues wrap around, and a toggle bit
is used to flag the end of the queue (the toggle is
flipped as the queue wraps, so that the reader
does not have to clear any OWN bits before
moving on).

The queues act as FIFOs between the user
process and kernel code:

The format of each 32 bit entry in the queues
is:

The Toggle value is 1 bit, the Action value is 7
bits, with the parameters for each action being 24
bits. The size of each queue is calculate so that
overflow is a rare, if not impossible, situation.

The InQ is used to pass received packets to
the user process, QoS notifications, device status
etc. The OutQ is used to pass packets to be
transmitted or buffer free commands. Each
queue reader is responsible for ensuring that the
queue is serviced regularly. The user process
does this by checking the toggle bit in the InQ,
and if no entry is ready, then the user process can
perform a poll or select on the NetIO device until
a new entry has been placed on the InQ.

Within the kernel, a Linux kernel tasklet is
used to service the OutQ, and the tasklet is
initiated as a result of device driver interrupts, or
as deadman requests from the user process.

9. Conclusion
The NetIO system is successfully being used

to implement an alternative framework for high
performance, robust packet processing.

User process

User Mode
Kernel Mode

NetIO
device drivers

NetIOKnet
Interface

User process

InQ OutQ

NetIO module

T Action Parameter(s)

AUUG 2004 - Who Are You?

50 A User Level Networking Infrastructure for Linux

One end result of the use of FIFO queues for
user/kernel interface is to minimise the number
of process scheduling context switches and
kernel system calls that need to be made under
high load conditions. In a high load, steady state
situation, with a single user process performing
the packet processing, no system calls need be
made for I/O rendezvous, and no process
context switches will occur (only device driver
interrupts occurring), thus the maximum CPU
utilisation is achieved. This, with the
combination of no packet data copying for
packet processing, ensures that maximum
packet processing throughput can be obtained,
yet within the safety of a user process.

There are significant advantages for using a
separate infrastructure for packet processing,
such as robustness and performance, yet
without forsaking the performance that a kernel
may provide.

