
AUUG 2004 - Who Are You?

Building Australiaʹs Fastest Computer 123

Building Australiaʹs Fastest Computer
Frank Crawford

ac3

<Frank.Crawford@ac3.com.au>

ABSTRACT
ac3 recently installed the fastest supercomputer in Australia (1.095 TFlops) consisting of

a 155 node Beowulf Cluster running Linux, Red Hat 9 and OSCAR.

The paper will outline a number of the issues related to setting up such a large system,
including the environmental considerations of heat and noise, and the techniques used to
install and manage the cluster in production.  This will include details of a number of
publicly available packages used in the management tasks, such as monitoring, patching
and reporting, as well as the security aspects, both to prevent unauthorised network
intrusion and local host based issues.

Finally the paper outlines details about benchmarking the system for Top500.org,
including “hpl”, the High Performance Linpack benchmarking program.  It will also
outline a number of issues with the whole Top500.org process.

1. Introduction
In 2000, The Australian Centre for Advanced

Computing and Communications was
established as the primary site for High
Performance Computing within NSW.  It is one
of a number of centres established throughout
Australia, others include VPAC for Victoria,
SAPAC for SA and QPSF in Queensland. In
addition, the national centre is the Australian
Partnership for Advanced Computing located at
ANU in Canberra.

ac3 was established by a consortium of seven
Universities in NSW and initially housed a NEC
SX5/2, a 64 processor SGI Origin 2400 and an 18
node, with a total of 68 processor IBM SP2.
Overall, this was a very balanced offering with
support for vector computing (NEC SX5), large
shared memory multiprocessor computing (SGI
Origin 2400) and distributed memory clustered
computing (IBM SP2).

In 2003, ac3 decided to decommission the
IBM SP2, and replace it with a new cluster.  At
the same time the University consortium
obtained funding for a new system.

1.1 A Linux Beowulf Cluster
While the existing systems at ac3 were all 64

bit systems, an analysis of the user requirements
soon made it clear that their needs would be met
by different technology.  After investigation it
was determined that the best fit to the userʹs
requirement would be a Linux Beowulf cluster
linked by a high speed network.

In 2002, UTS as the lead for ac3 Research, the
consortium of universities involved with ac3,
put a proposal for a grant to fund a “Cluster-

based High Performance Parallel Computer
System”.  The proposed system consisted of 128
dual 1GHz Pentium III systems, with an
aggregate performance of 400-500 GFlops, and
worth approximately $1M.  The system was
envisaged to act as a general High Performance
Computing (HPC) resource for NSW researchers
in a range of disciplines, and to supplement the
facilities then available at the national facility at
ANU.

The choice of a Cluster-based system, was
based on the recognition that such systems are
by far much more cost effective per MFlop than
other traditional HPC architectures.  In addition,
the adoption of cluster systems world-wide,
particularly within the US National Science
Foundation (NSF) has made available a wide
variety of software suitable for researchers in a
wide range of disciplines.

A Beowulf cluster is high performance
massively parallel system built primarily out of
commodity hardware, running a free-software
operating system like Linux or FreeBSD and
interconnected by a private high-speed network.
It consists of a loosely coupled collection of PCs
or workstations dedicated to running high-
performance computing tasks, and differs from
some others cluster types in that the nodes are
dedicated to running the cluster jobs, and it is
usually connected to the outside world through
a single node.

As the system consists of separate
components or nodes, and in particular each
node has its own individual memory, any
parallel programs need to support a distributed
memory architecture.  The most common
programming model for such a system is



AUUG 2004 - Who Are You?

124 Building Australiaʹs Fastest Computer

Message Passing Interface (MPI), although older
implementations such as PVM (Parallel Virtual
Machines) are also supported.

Aside from the individual nodes, one of the
biggest differentiators in Beowulf cluster
performance is the interconnection network
linking up the individual nodes.  Certain
applications need very high speed networks to
pass high volumes of small messages between
individual threads, whereas other do not require
much interprocess communication. As such the
interconnect has a major impact on the type of
jobs that run successfully on such a cluster.

1.2 Barossa Specifications
The system finally selected was based on a

limited tender to a number of commodity PC
vendors with previous experience with cluster
systems, and consists of 155 x Dell PowerEdge
1750 servers, each with 2 x Intel Xeon 3.06 GHz
CPUs.  The compute nodes each have 2GB RAM,
1 x 36 GB SCSI disk, while the head nodes (used
for system management) have 4GB RAM, 2 x 36
GB SCSI disks (mirrored) and the file server has
2GB RAM, 2 x 36 GB SCSI disks (mirrored) and
a fibre channel connection to a Dell/EMC CX200
with 1.2TB usable disk.  The original system
design is given in Figure 1.  The cost of this
system was approximately $850K.

The core of the system is an interconnection
switch, a Foundry FastIron 1500, with 11 x 16
port Gigabit blades and a Management blade.
This switch is capable of non-blocking transfer
between any two ports at Gigabit speed.

The system is housed in six racks, five of
which contain 32 nodes, the other containing the
head nodes, file server, CX200 and Foundry
switch. Each rack is configured with 6 x 15A
circuits.  In addition, each rack contains an
additional Dell PowerConnect 3248 switch used
for system monitoring and management.

The operating system is based on the Red Hat
9 distribution of Linux, controlled by the
package OSCAR, the Open Source Cluster
Application Resources.  This provides both
installation and management functions.

While there is an intention of running a
distributed file system using the space available
on each of the compute nodes, no suitable
candidate has yet been found.  As such one of the
nodes is a dedicated file server, connected to a
small SAN and shared to all the rest of the
cluster via NFS. While this is not an optimal
solution, it is a stable and workable solution
until a stable distributed file system becomes
available.  To improve performance, the space on
the nodeʹs local disk is used for job scratch space.

In line with ac3ʹs system naming policy, the
system is named after an Australian wine region,
in this case the Barossa Region in SA. Other
systems at ac3 are clare and hunter.

As barossa (pictured in Figure 2) is intended
to be used for High Performance Computing, in
particular for distributed computing, the system
was ranked for the Top500.org list (http://
www.top500.org). This involved running the
High Performance Linpack program, optimised

Figure 1: Original System Design for ʺbarossaʺ



AUUG 2004 - Who Are You?

Building Australiaʹs Fastest Computer 125

for this configuration, a process that took two to
three weeks.  The system was benchmarked at
1095 GFlops (109 Floating Point Operations/sec)
out of a theoretical maximum of 1860 GFlops,
raking it at 108 in the 22nd list published in
November 2003.  This made it the fastest system
in Australia, beating the previous holder,
APACʹs performance of 825.5 GFlops.
Interestingly, in the 21st list published six
months earlier, it would have ranked around 48.
However, within six months, i.e. for the 23rd list
published in June 2004, it had dropped to 207.

2. Environmental Requirements 
and Issues

While each individual server is nothing
spectacular, as a collection they put a strain on
ac3ʹs computing facilities.  While ac3 has only
been established within the last four years and
the design of the computer room was industry
best practice, the rapid changes to computer
architecture has meant changes to computer
room requirements.

2.1 Power Issues
The best way to look at the requirements, is in

terms of the power requirements for each rack,
as this affects both power delivery and also heat
dissipation and hence air conditioning.  In 2000,
most servers were 4 rack units in size or bigger,
with 2 rack unit servers just beginning to be
deployed.  In addition, power requirements for
these servers was of the order of 250W/system.
Taken together, it was unlikely that there were
more than 8 server/rack and hence a maximum
power requirement of 2KW/rack or 1.2KW/m2.

These power requirements could easily be
addressed by a single 10A circuit to each rack
and the heat can be removed with a single low
powered air-conditioner.  For redundancy, ac3
supplied at least two circuits to each rack and
has 4 air-conditioners each with dual
compressor for cooling.

Servers such as Dellʹs PowerEdge 1750
require 450W/system, and are each 1 rack unit in
height, hence 32 or more units can be installed in
a rack. This gives a power requirement of nearly
15KW or 9KW/m2 per rack. This is a 7 fold
increase in the power requirements per rack, and
a commensurate increase in the air-conditioning
requirements.

To supply this power, it now requires
multiple 15A (or larger) circuits to each rack,
with increased cabling, etc.  In fact this is born
out by the measured power figures seen for ac3ʹs
Beowulf cluster. Measured power requirements
for a fully loaded system are approximately
45KW or 9KW/rack for fully populated racks,
and is supplied by 3 x 15A circuits (with
appropriate redundancy).  In addition air-
conditioning requirements have gone from 1
unit to 3 units, although this is confused by the
issues of air flow requirements.

2.2 Temperature
As a side issue, there are also noticeable

differences between an idle and a fully loaded
system, with the power requirements varying
from 25KW when all nodes are idle to 45KW
when they are all fully utilised. Even more, the
temperature variation is physically noticeable,
with a 2-3degC variation felt at the back of the
system, again depending on load. This variation
in temperature can be seen in Figure 3, which
shows the increase in computer room
temperature as the cluster was brought on line.
These issues were later corrected by reallocation
of air-conditioning units.

2.3 Ambient Noise
The issue of airflow brings up a separate

problem, that of noise. The volume of air passing
through the 155 nodes, each of which has 7 small
fans produces a very noisy environment.  Some
measurements of the ambient noise level within

Figure 2: ac3 Beowulf Cluster ʺbarossaʺ

Figure 3: Temperature Variation During barossa
Installation



AUUG 2004 - Who Are You?

126 Building Australiaʹs Fastest Computer

the computer room has level of 82dB in the
vicinity of the cluster and a value of 76dB away
from the cluster. As a comparison, the NSW
OH&S policy recommends an average noise
level of 85dB over an 8 hour period, and 140dB as
a peak level.  Above this level, hearing protection
should be worn.  This is not a simple issue to
address, and takes a major redesign of the
individual components (e.g. nodes, racks, etc.).

2.4 Vibration
In addition, either the heating and cooling or

some other internal vibrations cause another
interesting problem.  We have an ongoing issue
of daughter and other cards, such as DIMM,
gradually working loose and having to be
reseated.  The effect is that we start getting ECC
errors from loose DIMMs or monitoring stops on
loose ERA/O cards.  This seems to be confined to
a few nodes, but does mean ongoing monitoring
and maintenance.

2.5 Cable Density
One final note that comes from this increased

density is network connectivity.  While barossa is
a special case, it does have the issue of 150+ UTP
cables all coming into the same 7 rack unit space
as the centre of the system.  This places a
premium on the use of cable management and in
particular inter-rack cabling.  While this is
spread over 6 racks, as an example of more
extreme density, we have another customer
looking at 20 servers in a single rack with 4 x
NICs, teamed to give 2 network connections,
and a system monitoring connection, meaning
that over 100 UTP cables try to fit into a 3 rack
unit space!

3. OSCAR Description
As with any computer system, the hardware

is only part of the equation for a Beowulf cluster.
The other essential component is the system and
application software packages.  For large Linux
clusters there are a few packages available, and
the one selected for barossa was OSCAR, the
Open Source Cluster Application Resource
(http://oscar.openclustergroup.org).
This package includes components applicable to
both system administration and general cluster
usage.

In fact, OSCAR is really a collection of other
open source packages, built with a set of
standard configuration options and grouped
together with a specially written installation
interface.  The packages themselves fall into
three separate categories:

• Infrastructure - consisting of ISC DHCPD,
OpenSSH and OpenSSL,

• System administration - consisting of the
System Installer Suite (SIS) and C3,

• Application support - consisting of MPICH
and LAM/MPI, PVM, OpenPBS batch queue
manager and Maui batch scheduler.

In addition, due to the common interface
available through the use of standard open
source systems, there are a few additional
system monitoring packages available, in
particular, ganglia a distributed monitoring
system and clumon, a cluster and OpenPBS
monitoring system.

One of the features of OSCAR is a high
degree of automation. This is a fairly obvious
requirement, given the large number of nodes
that require administration.  One advantage that
clusters have is a very high degree of replication
among the nodes.  For example in barossa there
are 152 compute nodes, all of which have the
same configuration.

3.1 Installation Support
One of the major components of OSCAR is

the System Installer Suite (SIS) (http://
sisuite.org), which itself is composed of
three separate components, the System Installer,
the System Imager and the System Configurator.
This suite of packages allows the creation of a
number of different system images, the
installation of an image onto a “bare-metal”
system and the configuration of the newly
installed image for the specific machine.

OSCAR hides much of the details of SIS,
especially the image creation performed by
System Installer, which creates the image, as it
creates it from a predefined set of RPMs.
However, SIS is capable of using a “golden-
client”, i.e. an existing system to clone, which it
copies and uses as the basis for other systems.

The basic process for image installation is:

• image creation (System Imager/OSCAR)

• collection of client information (System
Installer)

• load images to client (System Imager)

• configuration of host specific details (System
Configurator)

The primary information collected for each
client is which image is tied to the client and
which IP address is associate with that host.
While there are a variety of methods available
for system installation, the most common is a
network install, which involves a PXE boot,
installation of a basic Linux kernel, download of
the image, via ssh and rdist, and final boot to
system image.



AUUG 2004 - Who Are You?

Building Australiaʹs Fastest Computer 127

3.2 Booting and Netbooting
To enable netbooting of the client it is

necessary to obtain the MAC addresses of all
hosts, and this is one function that OSCAR adds
to the process, a GUI to associate these MAC
addresses with hostnames. Following this,
System Installer has functions to create the
appropriate DHCP configuration file including
passing appropriate PXE and installer options.

One interesting feature of SystemImager is
the ability for remote management of the PXE
boot process.  To enable this, it is necessary to
configure the systems to have a BIOS boot order
of Netboot, followed by hard drive.  At this point
SystemImager toggles the downloaded image to
either be one to install a new image, or fails the
PXE boot and hence falls through to booting
from the hard disk.

Despite these features, there is still an issue
with network loading, in that the traffic to load
155 nodes at once is extreme and as such we are
generally limited to loading about 16 nodes at a
time.  In an effort to alleviate this problem the SIS
developers have recently released a multicast/
broadcast enabled client that theoretically
should allow all clients to load at once.
Unfortunately, at present there still appear to be
some problems.

Leaving aside the problems with the
multicast client, with the current system it is
possible to load 16 clients in a period of about 5
mins, and hence reload the entire cluster within
an hour.  This is a huge time saving over having
to manually access each node for an installation.

3.3 Management

3.3.1 C3
The core of OSCARʹs management utilities is

the Cluster Command and Control (C3) package
from ORNL (http://www.csm.ornl.gov/
torc/C3/). It is a suite of Python based tools
that use ssh to push jobs out to various nodes.
By default the package affects all nodes, but
there is a simple syntax to specify a subset of
nodes.

The functions that C3 implements include
‘cexec’ to run a given command string on the
selected nodes of the cluster, ‘cpush’ to push a
file from the current system to other,
‘cpushimage’ which pushes an entire image
(although not as useful as it sounds) and
‘cshutdown’ which run the shutdown on each
node.

3.3.2 OpenSSH
One of the central items with this

management structure is the use of ssh and

common authorization keys across the cluster.
The first time a user logs in, the system runs a
script to create keys and inserts authentication
for the local host.  As all the userʹs home
directories are NFS mounted and the same on all
nodes, this allows the user to log into any node
without any further authentication.

Using these basic functions more complex
management functions are built, such as
‘opium’.  This is used to synchronise the
password and other system files across the
cluster, by using ‘cpush’ push out files who’s
checksums don’t match.  As this can be run from
cron, it means that user accounts are defined on
all nodes and they see the same environment on
which ever node they use.

3.3.3 Access Restrictions and OpenPBS
Of course letting users log into any node is in

fact counter productive in a batch environment,
as unscrupulous users can run additional jobs on
any node in the cluster.  To counter this, all users
are blocked from logging in to any compute
nodes through the use of /etc/security/
limits.conf, and then specific access is given to
the support group and other users as required.

In fact, for jobs to run through PBS, the
system does an implicit login, and so each user
needs access to their allocated nodes.  In
addition, ssh is used to start up the necessary
functions on any additional nodes which again
needs login access.  The way this is handled is
via system exits within PBS which modifies the
restrictions on the fly.  Prior to running a job PBS
invokes a prologue script as root on one of the
allocated nodes, and at the end of the job an
epilogue script.  By using these exits, it is
possible to modify /etc/security/limits.conf
before the job starts and then to remove these
changes at the end.  As this needs to be done on
each allocated node, this is also run over ssh.

The use of these system exits are also
essential to patch management across the entire
cluster.  The current method for performing
updates is to push the relevant RPM files out to
the nodes (usually via NFS), and then toggle a
flag for a reboot of the system (if required) when
all PBS jobs are completed.

3.3.4 Remote Management
As a final issue with system management, all

the servers are equipped with an Embedded
Remote Access Option (ERA/O), which allows
remote monitoring and management of the
server.  One of the major management features of
the ERA/O is the ability to power the server on or
off, independent of the state of the O/S.  While
Dell supports this through Remote
Administrator Server, and a 35MB package, in



AUUG 2004 - Who Are You?

128 Building Australiaʹs Fastest Computer

ac3ʹs environment, we have chosen to use an
open source package called PowerEdge::RAC
(http://www.lanceerplaats.nl/
PowerEdge/RAC/) which contains a Perl
module to access most of the functions on this
board (and other related Dell remote access
cards).  The most useful features of this package
are the monitoring functions, which will be
outlined below.

3.4 Monitoring

With such a large number of separate
systems, monitoring is an important function.
Currently there are three different packages in
use. The first is PowerEdge::RAC, described
previously.  This package monitors such
hardware functions as fan speed, CPU voltage,
etc.  Additionally, this package also accesses the
hardware event log and other hardware
information. By expanding on one of the sample
files it is possible to plot and monitor all the
hardware functions across all nodes.  This is now
being expanded to include notification of
hardware level events that require action.  A
sample output showing a number of the graphs
and other available information is shown below
(Figure 4).

Of more use for monitoring system activity is
a package called ‘ganglia’ (http://
ganglia.sourceforge.net).  This package
is a scalable distributed monitoring system,
which relies on a multicast-based listen/
announce protocol.  By default it monitors and
reports on CPU utilisation, load average,
memory usage, disk space and network
performance, and these statistics are reported for
the last hour, but all the results are stored in a
RRD database, so data can be examined over any
period. This gives an easy overview of the
system activity (as shown in Figure 5), but can
drill down to give details for an individual node.

Further, ganglia is extensible, in that additional
monitors can be added by the user.

The final monitoring system available is
‘clumon’ (http://clumon.ncsa.uiuc.edu),
which interacts with OpenPBS (and similar
schedulers) to report on the queue utilisation
and batch jobs submitted by the users.  It can
further drill down to give details about
individual nodes, jobs and queues.  This is the
main tool available to system users for
monitoring their system access.  A sample of this
can be seen below in Figure 6.

4. Usage Outside of the Cluster
While all the functions outlined are

applicable to cluster management, many of them
are as applicable to an environment with
multiple systems. For example at ac3, we have
used the SIS installation suite to clone systems to
move from old to new, and also used it to
duplicate database servers for a parallel
database management system.  To do this, it is
necessary to install the various RPMs on the

Figure 4: PowerEdge::RAC output

Figure 5: Ganglia output

Figure 6: Clumon output



AUUG 2004 - Who Are You?

Building Australiaʹs Fastest Computer 129

“golden-client” as well as the image server.  It is
then necessary to prepare the client for imaging,
which enables copying of the system.  From this,
take an image of current client and then use it for
the image from SystemImager for the
installation of the new client.

Similarly, many of the monitoring utilities
can be used across non-related systems, for
example, ganglia could be used to track details
of different systems.  Even further, the
PowerEdge::RAC software does not rely on any
cluster functions, but can just as easily be used
for separate, unrelated systems.

5. Benchmarking
While it may not be the primary reason for

the purchase of a high performance system,
trying to get a high position within the
Top500.org list http://www.top500.org is an
interesting exercise in itself. This list has come
out of work previously done separately by Hans
Meuer and Jack Dongarra on the status of high
performance and supercomputers through out
the world.  The list is based on the “best”
performance as measured by the LINPACK
Benchmark, which is used to solve a dense
system of linear equations.  For the Top500.org
list, a version of the benchmark is used that
allows the user to scale the size of the problem
and to optimise the software in order to achieve
the best performance for a given machine.

An implementation of this can be found at
http://www.netlib.org/benchmark/hpl,
but there is nothing stopping an organisation
writing their own from scratch.  In fact, Intel
have recently released a version of the code that
is specifically designed for shared memory
systems that they have heavily modified for Intel
architectures and compilers.  The only real
constraint is that the procedure must conform to
the standard operation count for LU
factorization with partial pivoting. In particular,
the operation count for  the algorithm  must  be
2/3 n3 + O(n2) floating point operations.

What is reported is the maximum
performance (Rmax) in GigaFLOPS, or 109

Floating Point Operations per Second, the
problem size (Nmax), and the problem size
(Nhalf) for half the maximum performance.  The
theoretical peak performance (Rpeak) is also
reported.  For example for barossa, Rmax is 1095
GFlops with an Nmax of 179000, and Nhalf of
40000, while the Rpeak is 1860.48 GFlops.

While there are a large number of parameters
that can be modified to tune hpl (see Appendix
1: HPL.dat), the important ones are:

N: problem size

NB: the block size for the matrix, and

P & Q: the partitioning of the problem across
nodes.

Put simply, “N” relates to the size of memory
available across the system, “NB” relates to the
actual algorithm used for the decomposition,
and “P×Q” is equal to the number of CPUs
available.  Some of the other parameters can
have major effect if the wrong selection is made,
but once chosen, there is little variation, e.g.
“BCAST”, which affects the order of message
passing.

The best procedure to adopt in choosing
suitable values is to set the problem size to a
smallish value (e.g. Nhalf) initially, then to try
and optimise the other parameters, followed by
then verifying them with much larger problem
size values.  For the barossa runs the problem
size of 40000 took approximately 60 secs, while a
problem size of 175000 takes nearly 1 hour.

One of the most amazing things about the
LINPACK benchmark is that the performance is
mostly affected by the quality of the BLAS (Basic
Linear Algebra System) libraries chosen.
Optimisation of the basic code has little effect.
This is because any library chosen should be
very heavily optimised before starting any other
work.  In the case of benchmarking barossa,
initially we ran it with the standard Linux
libraries, and obtained a value of around
500GFlops, we then made use of Intelʹs MKL 6.0
and immediately jumped to 850GFlops.  A
further upgrade to Kazushige Gotoʹs BLAS
libraries (http://www.cs.utexas.edu/
users/kgoto/) which include hand coded
optimisations, produced a figure of around
970MFlops. The final step was to switch to Intelʹs
MKL 6.1, which included Kazushige Goto’s
optimisations, gave a result of near 1035GFlops.
The final change was to add 8 additional
computation nodes (16 CPUs) to achieve our
final peak result of 1095GFlops.  However, as
you can see from this history, selecting the right
library can more than double the performance.

In addition to the BLAS library affecting
performance, it also affects the optimum value of
NB.  This relates to internal issues, and changes
will cause some variation.  For example with
Kazushige Goto’s library, the reported best
values are around 112, which for MKL the better
value turned out to be around 200.

The problem size is the next most important
factor.  Obviously the larger the problem size,
the better the performance, all other factors
equal. However, for optimum performance, the
problem needs to remain in RAM, and so
anything that causes swapping will also cause a
dramatic drop in performance.  Again, using



AUUG 2004 - Who Are You?

130 Building Australiaʹs Fastest Computer

barossa as an example, a problem size of 181000
gave a result of 1078GFlops, while 182000 results
in 876GFlops.

This also has the side effect that sometimes
better performance can be obtained on less
hardware.  At one point, we considered running
with two less nodes, as 150 (15×10) than 152
(18×16).  However, (36×9) gave an even better
performance, so it was not necessary.

The last item of interest is the partitioning.
General experience indicates that P & Q being
approximately equal give the best performance,
although in barossa’s case Q > P gives the best
result, with P×Q = 8×36 giving a result of
1027GFlops, while 16×18 gave only 924GFlops.

Of course the overriding factor affecting the
performance is the hardware, and this is
something that isnʹt easily changed.  Looking
through the results in the Top500.org listing, for
clusters, the biggest factors are the available
memory, and the interconnect.  It is obvious from
the maximum problem size which clusters are
composed primarily nodes with 1GB of RAM.
Further, for systems that have only a Fast
Ethernet interconnect (i.e. 100Mb/sec), their
maximum performance is well below that of
Gigabit Ethernet (1Gb/sec) or Myinet.

The peak performance (Rpeak) is a theoretical
maximum, and for barossa it is given by the
number of CPUs (152 dual Xeon compute nodes
= 304 CPUs) times the processor speed
(3.06GHz) times 2 operations per clock tick,
giving a value of 152 × 2 × 3.06 × 2 =
1860.48GFlops.

The final output from the run can be seen in
Appendix 2: full_run_152.1095, but does bring
up a very important point.  It isnʹt obvious from
this output, but due to minor difference in each
run on each node, no two runs will necessarily
generate the same performance figure. The
Top500.org results accept the maximum value
achieved, and provided it is reasonable, this is
used.  The variation can be a few percent, for
example, when rerunning ‘hpl’ with the same
parameters, values between 1095GFlops and
1081GFlops were obtained.

6. Conclusion
High Performance Computers have often

lead the computing environment in both
hardware and software, and modern Linux
Beowulf clusters are no different.  In the
deployment of barossa at ac3 we have
discovered issues both with the environment
requirements for large systems, in particular
power, cooling and noise issues, and in suitable

software to automate the management and
monitoring of the systems.

The variation in LINPACK results brings into
question the results published in the Top500.org
list, as on close examination, there are a large
number of similar systems that are all ranked the
same, with exactly the same Rmax value.
Unfortunately, this is both wrong, and turns the
Top500.org list into a marketing tool rather than
a valid representation, as a large number of the
top systems have never been tested and are not
even running as a cluster.  This is almost like
claiming that a warehouse full of workstations
should obtain an entry within the list.

Finally, as interesting, the software used for
the system is Open Source, but more
importantly, consists of a number of Open
Source projects, built on top of other open source
projects, which use basic open source utilities.
Put together they make a flexible and extensible
system which can be tailored to any special
requirement, in this case the management of the
fastest system in Australia.

Acknowledgments
A complex system like this cannot be build by

just a single person, and ac3’s Beowulf cluster is
no different.  Iʹd like to acknowledge the efforts
of the following in the construction and
management of barossa: Duraid Madina
(UNSW), Youzhen Cheng (ac3), Jim Lowe (ac3)
and Sergey Omelaenko (Dell).



AUUG 2004 - Who Are You?

Building Australiaʹs Fastest Computer 131

Appendix 1: HPL.dat
HPLinpack benchmark input file
Innovative Computing Laboratory, University of Tennessee
HPL.out      output file name (if any)
6            device out (6=stdout,7=stderr,file)
9            # of problems sizes (N)
40000 175000 176000 177000 178000 179000 180000 181000 182000 Ns
1            # of NBs
200      NBs
1            # of process grids (P x Q)
8        Ps
38       Qs
16.0         threshold
1            # of panel fact
2        PFACTs (0=left, 1=Crout, 2=Right)
1            # of recursive stopping criterium
8          NBMINs (>= 1)
1            # of panels in recursion
2            NDIVs
1            # of recursive panel fact.
0        RFACTs (0=left, 1=Crout, 2=Right)
1            # of broadcast
1           BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)
1            # of lookahead depth
1 2 0            DEPTHs (>=0)
2            SWAP (0=bin-exch,1=long,2=mix)
64           swapping threshold
0            L1 in (0=transposed,1=no-transposed) form
0            U  in (0=transposed,1=no-transposed) form
1            Equilibration (0=no,1=yes)
8            memory alignment in double (> 0)

Appendix 2: full_run_152.1095
============================================================================
HPLinpack 1.0  --  High-Performance Linpack benchmark  --  September 27, 2000
Written by A. Petitet and R. Clint Whaley,  Innovative Computing Labs.,  UTK
============================================================================

An explanation of the input/output parameters follows:
T/V    : Wall time / encoded variant.
N      : The order of the coefficient matrix A.
NB     : The partitioning blocking factor.
P      : The number of process rows.
Q      : The number of process columns.
Time   : Time in seconds to solve the linear system.
Gflops : Rate of execution for solving the linear system.

The following parameter values will be used:

N      :   40000   175000   176000   177000   178000   179000   180000   181000 
          182000 
NB     :     200 
P      :       8 
Q      :      38 
PFACT  :   Right 
NBMIN  :       8 
NDIV   :       2 
RFACT  :    Left 
BCAST  :  1ringM 
DEPTH  :       1 
SWAP   : Mix (threshold = 64)
L1     : transposed form
U      : transposed form
EQUIL  : yes
ALIGN  : 8 double precision words

----------------------------------------------------------------------------

- The matrix A is randomly generated for each test.
- The following scaled residual checks will be computed:
   1) ||Ax-b||_oo / ( eps * ||A||_1  * N        )
   2) ||Ax-b||_oo / ( eps * ||A||_1  * ||x||_1  )



AUUG 2004 - Who Are You?

132 Building Australiaʹs Fastest Computer

   3) ||Ax-b||_oo / ( eps * ||A||_oo * ||x||_oo )
- The relative machine precision (eps) is taken to be          1.110223e-16
- Computational tests pass if scaled residuals are less than           16.0

============================================================================
T/V                N    NB     P     Q               Time             Gflops
----------------------------------------------------------------------------
W11L2R8        40000   200     8    38              78.36          5.445e+02
----------------------------------------------------------------------------
||Ax-b||_oo / ( eps * ||A||_1  * N        ) =        0.0158003 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_1  * ||x||_1  ) =        0.0144471 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_oo * ||x||_oo ) =        0.0028370 ...... PASSED
============================================================================
T/V                N    NB     P     Q               Time             Gflops
----------------------------------------------------------------------------
W11L2R8       175000   200     8    38            3331.72          1.072e+03
----------------------------------------------------------------------------
||Ax-b||_oo / ( eps * ||A||_1  * N        ) =        0.0673868 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_1  * ||x||_1  ) =        0.0089810 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_oo * ||x||_oo ) =        0.0015430 ...... PASSED

============================================================================
HPLinpack 1.0  --  High-Performance Linpack benchmark  --  September 27, 2000
Written by A. Petitet and R. Clint Whaley,  Innovative Computing Labs.,  UTK
============================================================================

An explanation of the input/output parameters follows:
T/V    : Wall time / encoded variant.
N      : The order of the coefficient matrix A.
NB     : The partitioning blocking factor.
P      : The number of process rows.
Q      : The number of process columns.
Time   : Time in seconds to solve the linear system.
Gflops : Rate of execution for solving the linear system.

The following parameter values will be used:

N      :   40000   175000   176000   177000   178000   179000   180000   181000 
          182000 
NB     :     200 
P      :       8 
Q      :      38 
PFACT  :   Right 
NBMIN  :       8 
NDIV   :       2 
RFACT  :    Left 
BCAST  :  1ringM 
DEPTH  :       1 
SWAP   : Mix (threshold = 64)
L1     : transposed form
U      : transposed form
EQUIL  : yes
ALIGN  : 8 double precision words

----------------------------------------------------------------------------

- The matrix A is randomly generated for each test.
- The following scaled residual checks will be computed:
   1) ||Ax-b||_oo / ( eps * ||A||_1  * N        )
   2) ||Ax-b||_oo / ( eps * ||A||_1  * ||x||_1  )
   3) ||Ax-b||_oo / ( eps * ||A||_oo * ||x||_oo )
- The relative machine precision (eps) is taken to be          1.110223e-16
- Computational tests pass if scaled residuals are less than           16.0

============================================================================
T/V                N    NB     P     Q               Time             Gflops
----------------------------------------------------------------------------
W11L2R8        40000   200     8    38              77.31          5.519e+02
----------------------------------------------------------------------------
||Ax-b||_oo / ( eps * ||A||_1  * N        ) =        0.0175013 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_1  * ||x||_1  ) =        0.0160024 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_oo * ||x||_oo ) =        0.0031424 ...... PASSED
============================================================================



AUUG 2004 - Who Are You?

Building Australiaʹs Fastest Computer 133

T/V                N    NB     P     Q               Time             Gflops
----------------------------------------------------------------------------
W11L2R8       175000   200     8    38            3311.22          1.079e+03
----------------------------------------------------------------------------
||Ax-b||_oo / ( eps * ||A||_1  * N        ) =        0.0627572 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_1  * ||x||_1  ) =        0.0083640 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_oo * ||x||_oo ) =        0.0014369 ...... PASSED
============================================================================
T/V                N    NB     P     Q               Time             Gflops
----------------------------------------------------------------------------
W11L2R8       176000   200     8    38            3360.40          1.082e+03
----------------------------------------------------------------------------
||Ax-b||_oo / ( eps * ||A||_1  * N        ) =        0.0094875 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_1  * ||x||_1  ) =        0.0077927 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_oo * ||x||_oo ) =        0.0013420 ...... PASSED
============================================================================
T/V                N    NB     P     Q               Time             Gflops
----------------------------------------------------------------------------
W11L2R8       177000   200     8    38            3418.90          1.081e+03
----------------------------------------------------------------------------
||Ax-b||_oo / ( eps * ||A||_1  * N        ) =        0.0043984 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_1  * ||x||_1  ) =        0.0085455 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_oo * ||x||_oo ) =        0.0015046 ...... PASSED
============================================================================
T/V                N    NB     P     Q               Time             Gflops
----------------------------------------------------------------------------
W11L2R8       178000   200     8    38            3460.28          1.087e+03
----------------------------------------------------------------------------
||Ax-b||_oo / ( eps * ||A||_1  * N        ) =        0.0382668 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_1  * ||x||_1  ) =        0.0082226 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_oo * ||x||_oo ) =        0.0014446 ...... PASSED
============================================================================
T/V                N    NB     P     Q               Time             Gflops
----------------------------------------------------------------------------
W11L2R8       179000   200     8    38            3490.59          1.095e+03
----------------------------------------------------------------------------
||Ax-b||_oo / ( eps * ||A||_1  * N        ) =        0.0162521 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_1  * ||x||_1  ) =        0.0086945 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_oo * ||x||_oo ) =        0.0014488 ...... PASSED
============================================================================
T/V                N    NB     P     Q               Time             Gflops
----------------------------------------------------------------------------
W11L2R8       180000   200     8    38            3569.05          1.089e+03
----------------------------------------------------------------------------
||Ax-b||_oo / ( eps * ||A||_1  * N        ) =        0.0039023 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_1  * ||x||_1  ) =        0.0081021 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_oo * ||x||_oo ) =        0.0013326 ...... PASSED
============================================================================
T/V                N    NB     P     Q               Time             Gflops
----------------------------------------------------------------------------
W11L2R8       181000   200     8    38            3665.82          1.078e+03
----------------------------------------------------------------------------
||Ax-b||_oo / ( eps * ||A||_1  * N        ) =        0.0046288 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_1  * ||x||_1  ) =        0.0083695 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_oo * ||x||_oo ) =        0.0014308 ...... PASSED
============================================================================
T/V                N    NB     P     Q               Time             Gflops
----------------------------------------------------------------------------
W11L2R8       182000   200     8    38            4589.01          8.758e+02
----------------------------------------------------------------------------
||Ax-b||_oo / ( eps * ||A||_1  * N        ) =        0.0094461 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_1  * ||x||_1  ) =        0.0089341 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_oo * ||x||_oo ) =        0.0015777 ...... PASSED
============================================================================

Finished      9 tests with the following results:
              9 tests completed and passed residual checks,
              0 tests completed and failed residual checks,
              0 tests skipped because of illegal input values.
----------------------------------------------------------------------------

End of Tests.
============================================================================



AUUG 2004 - Who Are You?

134 Building Australiaʹs Fastest Computer


