
AUUG 2004 - Who Are You?

Using JAAS and Sun Java System Access Manager to authenticate federally-identified users of a web-application 171

Using JAAS and Sun Java System Access Manager to
authenticate federally-identified users of a web-

application
A Case Study

David Bullock
Australian Java User’s Group

<db@dawnbreaks.net>

ABSTRACT
From the perspective of applications that use authentication services, federated identity

is similar to more established forms of centralized account-management facilitating single-
sign-on (SSO), except that an application accepting connections from federally-identified
users no longer directly receive user credentials.

Existing Java APIs for access-control in both JAAS (checkPermission()) and J2EE
(isCallerInRole()) already provide near-transparent authentication, and are well-placed
to exploit federated identity without significant application changes.

The push for federated identity is likely to increase awareness of opporunities that
centralized account management afford, because it requires less trust in applications.
Centralized account management is an enabler of central management of access-policies.
The most useful policies can evaluate the permissions of a user with respect to specific
application resources. However, to allow external evaluation, applications must code policy-
enforcement points without assuming any particular policy framework.

Using JAAS in combination with Sun Java System Access Manager it is possible to
achieve enforcement of policy without the application assuming anything about how a user
comes to have a permission, thereby allowing use of policy frameworks such as Role Based
Access Control. However, the programming contract of J2EE ironically interferes with
protection of application resources in an enterprise environment, even though that
environment is where browser-based federated identity makes sense.

We consider how we would approach coding an access control point for p-Contact, a
web-based contact-management system which allows users to define, use and share
mailing-lists according to a fine-grained access-control scheme that supports conformance
with Australian privacy law.

1. Federated versus Centralized
Identity

Federated identity changes where a user
places their trust. In centralized schemes, the
user trusts the application, whereas in federated
schemes, the user trusts the federator. Figures 1
and 2 depict the roles played by each software
actor in centralized and federated schemes,
respectively.

In each case, the application ends up with the
notion that some user, identified by a principal,
‘is logged in’.

Federated authentication protocols are not
new. Every security technology supporting
single-sign-on uses the basic federation idea.

The current rush towards ‘federated identity’
also seeks to ascribe to the federation service

management of sensitive information other than
login-credentials (such as contact information),
to apply the technique brazenly across
organizational boundaries, and to achieve it
using an unmodified HTTP user agent [13,14].

2. Java Authentication and
Authorization Service

The Java Security Architecture initially had
support only for enforcing access-control based
on the location from which the currently-
executing code was obtained [1] (a necessary
feature given the dynamic late-binding facilities
of Java). Later, support was added for enforcing
access-control based on the identity of the user
accessing the code, as well as an authentication
system similar to the Linux Pluggable
Authentication Module (PAM) to authenticate

AUUG 2004 - Who Are You?

172 Using JAAS and Sun Java System Access Manager to authenticate federally-identified users of a web-application

users. The Java Authorization and
Authentication System (JAAS) [2] was
integrated into the platform with JDK 1.4.

2.1 Authorization
Authorization in the unified security model

is performed by a Policy object which tests
whether the current AccessControlContext is
associated with a Permission due the location of

its codebase and/or the identity of the user
associated with the current thread.

The following example adapted from the
Java Security Architecture specification (3.1.18)
uses a concrete sub-class of the abstract
java.security.Permission class to represent an
operation or action, watch, on some system
resource or target, channel-5, in a television
(where a Java Virtual Machine may be running):
public void watchChannel5(){
 TVPermission tvperm =
 new TVPermission(“channel-5”, “watch”);
 AccessController.checkPermission(tvperm);
 /* ... code being guarded */
}

The AccessController will throw an
AccessControlException, unless the permission
had previously been associated with the
execution context. The AccessController

delegates ultimately to the configured Policy
object.

The default Policy object evaluates
permissions based on statements in an
administrator-configured policy file. The
following statement restricts watching channel-5
to code downloaded from Sun:
grant codeBase “http://java.sun.com/” {
 permission com.abc.TVPermission
 “channel-5”, “watch”;
}

Or to specify that only users having the
principal “channel-surfer” are allowed to watch
the channel, we could alternately specify:
grant Principal “channel-surfer”, codeBase
“http://java.sun.com/” {
 permission com.abc.TVPermission
 “channel-5”, “watch”;
}

Some points to note:

• Although the default Policy implementation
requires Permissions to take String argument
because it must construct them from string-
literals in the policy file, there is no
fundamental restriction on what objects a
Permission associates together.

• It is not essential that policies be stored in a
file. An alternative Policy object
(configurable by the JVM administrator)
could fetch policies from a database, or
delegate the decision to an external system.
This is exactly the approach taken by Sun
Java Identity server to provide centralized
management of access-control policies.

• The class of the permission and the
arguments it takes are not fixed in advance.
Provided the default Policy object is able to
construct a Permission from information in
the policy file, and to use its equals(Object)

Figure 1: Centralized Identity

Figure 2: Federated Identity

AUUG 2004 - Who Are You?

Using JAAS and Sun Java System Access Manager to authenticate federally-identified users of a web-application 173

or implies(Permission) methods, any kind of
information we desire may qualify the
permission.

• The principal can be a role if desired, as is
the case here with “channel-surfer”. The
default Policy object relies on authentication
having associated the role-principal with the
JAAS Subject. (This is not the only way to
evaluate permissions – the default Policy
object simply happens to find this
convenient).

2.2 Authentication
JAAS gives us a consistent interface to any

number of login modules which may have been
configured by an administrator. Briefly the login
code is like:

 LoginContext lc =
 new LoginContext(
 “authenticationDomain”,
 new CustomCallbackHandler()
);
 lc.login();
 Subject s = lc.getSubject();

The callback interface implemented by
CustomCallbackHandler here allows the login-
modules to query the application for
information such as username, password,
challenge-response, etc, which the application
will collect from the user as necessary.

After successful login, we now have a Subject
which encpasulates the identity of a user, as
authenticated by whatever login modules the
administrator thought appropriate to use.

2.3 Associating Users to
AccessControlContexts

To associate a particular user (an application
may be interacting with more than one) with the
current AccessControlContext, an application
must:

PrivilegedAction privilegedAction =
 new PrivilegedAction() {
 public Object run() { watchChannel5(); }
 }
Subject user = getUser(); // authenticate
Subject.doAs(user, privilegedAction);

Here, the doAs(Subject, PrivilegedAction)

invocation temporarily associates permissions
held by the user with the current
AccessControlContext, while the run() method
of the PrivilegedAction is executing, and
dissociates them immediately when the
run()method terminates (either naturally, or
because of a SecurityException or other
unchecked Exception or Error).

2.4 Resource Collections
One of the resources protectable by the Java

Security Architecture are files. Clearly, it would
be tedious to specify in the policy file the precise
permissions of each file with respect to each
code-base location and user-role combination.

For some types of resources (such as files on
file-system), it may be appropriate to have a
‘super-permission’ which implies permissions
on portions of a resource hierarchy. For example,
for the following permissions below,
Permission p1 =
 new FilePermission(“file:/tmp/*”, “read”);
Permission p2 =
 new FilePermission(“file:/tmp/jones”,
 “read”);
Permission p3 =
 new FilePermission(“file:/*”, “write”);

the implies(Permission) method of
FilePermission can be overridden such that:
 (p1.implies(p2) == true) &&
 (p1.implies(p3) == false) &&
 (p2.implies(p1) == false) &&
 (p2.implies(p3) == false) &&
 (p3.implies(p1) == true) &&
 (p3.implies(p2) == true)

This facility is useful both for specification of
permissions in the default policy file (since
everything must be represented as strings there
anyway).

It is also useful because representing a
Subject’s permissions over the entire file-system
does not require a Permission instance for each
file in the file-system to be carried by the
Subject.

On this latter point, it appears to have been
an early design approach that concrete
Permission instances were available for
evaluation via the implies method. For the
purposes of protecting access to system
resources, which is easily satisfied by local
evaluation of the policy, this approach was
adequate.

However, since JDK 1.4 there is also an
implies method on the Policy class. This allows
the policy to be evaluated remotely, without
transporting perhaps hundreds of Permission
classes on the wire.

This is one tool which we can use when
enforcing access-control to application
resources, since the sheer number of those
resources could often be an obstacle to
centralized access-control.

3. Policy Evaluation
When we guard a code-block with

AccessController.checkPermission(Permission)
, and associate a Subject with an

AUUG 2004 - Who Are You?

174 Using JAAS and Sun Java System Access Manager to authenticate federally-identified users of a web-application

AccessControlContext, our application code
assumes that the installed Policy object will
know how to associate the user with the
permission, if indeed they do have it.

It is imperative that applications be agnostic
about how users acquire permission, to allow
organisations to externally implement whatever
security policy they like, whether it be Role
Based Access Control [4] or something more
substantial [12].

We really do want

{
 Permission perm =
 new Permission(resource, action);
 checkPermission(perm);
 // guarded code
}

and not

if (lookup(getPrincipal(), resource,
 action)) {
 // guarded code
}

as the latter gives no opportunity for
centralized policy evaluation, which may take
other factors into account.

3.1 Exporting Application Attributes
for Centralized Policy Evaluation

p-Contact must enforce a policy rule that
only authorized users may send a message to a
distribution list.

To evaluate policy for the p-Contact
permission ‘can post mail to distribution-list’,
Identity Server must have some notion of the
distribution-list and its characteristics (at a
minimum, the ID of the list).

This question of how to partition the access-
policy evaluation between applications and
middleware is investigated more fully in [10, 11].
However two main strategies present
themselves in our case:

1. The Policy object is further customized to
make decisions based on local application
data, as well as policies stored in Identity
Server; or

2. A relevant subset of application data is
exported to Identity Server in a structure that
Identity Server tools can work with. This
puts some obligation on the application to
use Identity Server APIs to export the data,
but facilitates the use of out-of-the-box tools
when defining policy.

It should be noted that directory servers (on
which Identity Server is based) are especially
adept at storing attribute information, and that
the second approach is more useful if policy

evaluation must include other applications, and
makes less-technical demands on deployers.

4. How JAAS Participates in
Single Sign On with the Sun
Java System Identity Server

ISPolicy provides an implementation of
javax.security.auth.Policy to which JAAS
AccessControlContexts ultimately defer policy
decisions. The ISPolicy object in turn defers
policy decisions to the Policy service of Identity
Server. The ISPolicy implementation is able to
enforce the same policy-decisions as the default
JDK Policy object, as well as decisions regarding
ISPermissions.

The constructor for an ISPolicy is as follows:

/**
 * Constructs an ISPermission instance,
 * with the specified service name,
 * resource name and action name.
 */
 ISPermission(
 java.lang.String serviceName,
 java.lang.String resourceName,
 java.lang.String actions,
 java.util.Map envParams
)

The serviceName relates to a service in
Identity Server.

4.1 Coding a p-Contact Access Rule
with JAAS and Sun Java System
Identity Server

Our main obligation when coding flexible
access-control enforcement points is to put an
AccessController.checkPermission() to guard
the message-sending code block. To write it
naturally in JAAS:

public void sendMessage(Message m,
 ContactList l){
 PContactPermission perm =
 new PContactPermission(l, "post");
 // throws exception if no permission
 AccessController.checkPermission(perm);
 /* ... code being guarded */
}

However, unlike the default Policy object,
which would compare the Permission it
construted from the policy file, with the one we
supply to it programmatically, the ISPolicy

specifically expects an ISPermission if it is to
involve Identity Server in the evaluation. For
other permissions, ISPolicy behaves
equivalently to the default Policy provided by
the JDK.

Fortunately, ISPermission suits our needs
(having both a target and an action field), and we
can write equivalently:

AUUG 2004 - Who Are You?

Using JAAS and Sun Java System Access Manager to authenticate federally-identified users of a web-application 175

public void sendMessage(Message m,
ContactList l) {
 ISPermission perm =
 new ISPermission("eval", l.getId, "post",
null);
 AccessController.checkPermission(perm);
 /* ... code being guarded */
}

Someplace else in our code, we must
authenticate our users, and associate them with
an AccessControlContext using Subject.doAs()
but these obligations are easily met.

5. J2EE Shortcomings
Java 2 Enterprise Edition (J2EE) extends the

statndard Java edition as a platform for multi-
user applications. J2EE’s per-user security
mechanisms predate JAAS by a few years, and
has so far taken an approach which does not
expose JAAS to developers.

Instead of AccessControl.checkPermission
(Permission), in J2EE, we have a method:
boolean isCallerInRole(String role)

Reflecting the composite nature of J2EE, this
method is named slightly differently depending
on whether the enquiry is about a
ServletRequest (web-tier), or EJBContext (EJB
tier).
ServletRequest.isUserInRole(String)
EJBContext.isCallerInRole(String)

We may think of the container has having
acquired the JAAS subject, and executing all
code touched by the remote entry point inside an
extended Subject.doAs() construction on our
behalf. The effects achieved are the same, and we
are relieved of the need to setup the security
context – we only have to enforce the decision
points using isCallerInRole().

Additionally, we no longer have an API
requiring us to take explicit action to
authenticate the user(LoginContext.login()) ...
the J2EE container is assumed to have done this
transparently.

Allowing the J2EE container to compute
whether the caller actually has the role or not is
consistent wiht our aims to keep policy-
evaluation out of our application domain.

However, there are downsides.

EJB does not allow us to specify a target
resource – only a ‘role’. We might think to
overload the role, such that
TVPermission(“channel-5”, “watch”) becomes
the ‘role’ “tv:watch:channel-5”. After all, it is of
little consequence to the policy evaluator if it has
to do a little extra parsing.

Unfortunately, we are unable to use our
overloaded role string, since the roles we must

query against come from a fixed set of roles
defined in a J2EE deployment descriptor!

We can only hope that this situation changes
soon.

Finally, wheras in JAAS, we had static access
to AccessController.checkPermission(), we now
must have a reference to the ServletRequest or
EJBContext at the point in code where we wish
to enforce access policy. This makes significant
intrusions into our code, requiring us at least to
wrap, and then pass-around the reference to the
object which can answer our question. It is
possible this restriction is inherent to the J2EE
resource management model, but it does seem
that it could have been done differently.

5.1 JACC
The Java Authorization Contract for

Containers (JACC) [3] seeks to unify the JAAS
and J2EE approaches by requiring (web and EJB)
containers to defer to the JAAS subsystem for
policy evalution.

The Servlet or EJB container converts the role
into a Permission object, and using an
AccessControlContext which is aware of the
principal that represents the user to the
application-server, invokes
AccessControl.checkPermission(Permission) on
our behalf.

JACC specifies 5 permisions that containers
will instantiate and test with a call to
Subject.doAs() on the component-provider’s
behalf:

Declarative security in ejb-jar.xml

EJBMethodPermission
 * String ejbName
 * String methodName
 * String interfaceName
 * String[] methodParams

EJB code that uses isCallerInRole(String)

EJBRoleRefPermission
 * String ejbName
 * String roleRef

Declarative security in web.xml, without
reference to transport guarantees

WebResourcePermission
 * String urlPatternSpec
 * String[] httpMethods

Declarative security in web.xml, with
reference to transport guarantees

WebUserDataPermission
 * String urlPatternSpec
 * String[] httpMethods
 * String transportType

Servlet code that uses isUserInRole(String)

AUUG 2004 - Who Are You?

176 Using JAAS and Sun Java System Access Manager to authenticate federally-identified users of a web-application

WebRoleRefPermission
 * String servletName
 * String roleRef

Unfortunately, the contract stops short of
requiring containers to make the JAAS Subject
available, or export the Subject’s principals and
credentials to an AccessControlContext.

5.2 Sun Java System to the Rescue?
Sun Java System Identity Server [6,7] gives us

a (proprietary) way to escape the limitations of
the J2EE container.

A J2EE-container is first of all protected by a
‘Policy Agent’ [5] which acts as an interceptor of
client requests, and ensures the federated
identity authentication procedure is followed,
and gives us access to the single-sign-on (SSO)
token assigned to the caller.

The presence of the Policy Agent facilitates
discovery of the SSO token associated with a
(web or EJB) request. Once we have the token,
we can use (non-JAAS) policy APIs [8,9] to
evaluate a policy using similar arguments as
encapsulated by our PContactPermisssion.

import com.sun.identity.agents.filter.\
 AmFilterManaer;
import com.iplanet.sso.SSOToken;
import com.iplanet.sso.SSOTokenManager;
com.sun.identity.policy.client.\
 PolicyEvaluatorFactory;
com.sun.identity.policy.client.\
 PolicyEvaluator;

AmSSOCache ssoCache =
 AmFilter.getAmSSOCacheInstance();
String ssoToken =
ssoCache.\
 getSSOTokenForUser(getEJBContext()));

SSOTokenManager mgr =
 SSOTokenManager.getInstance();
SSOToken token =
 mgr.createSSOToken(ssoToken);
PolicyEvaluatorFactory f =
 PolicyEvaluatorFactory.getInstance()
PolicyEvaluator evaluator =
 factory.getPolicyEvaluator(“”);

boolean allowed = evaluator.isAllowed(
 token,
 “distribution-list-21”, // resource
 “post”, // action
 Collections.EMPTY_MAP
);

if (allowed) (
 // privileged block
}

So it seems that Identity Server may have
somthing to offer where J2EE takes away. Most
of the dirty work requiring ‘foreign’ APIs could
be delegated to helper methods, giving us
perhaps:

boolean allowed = MyAccessController.check(
 ejbContext,
 list.toString(),
 "post"
);

6. Further Work
We have only looked at a fairly trivial

permission, involving only an entity in our
system, and an entity in the organisation’s user-
directory.

We did not consider how application
information is exported to Identity Server for the
purposes of external policy evaluation, not did
we explore the capabilities of Identity Server in
this regard.

We only looked at the API for Sun Java
System Identity Server, and did not show actual
configurations or policy definitions, or test
actual operation of our ideas (partly owing to the
non-trivial systems-administration required to
setup Identity Server).

We did not consider the possibility of
ignoring J2EE container security, and
performing JAAS login ourselves. We suppose
for now that this might break integration with
components that did use the container’s
facilities, and possibly break clustering.

We did not consider how GuardedObject in
the Java Security Architecture might be applied
to our situation.

We did not consider whether it might be
possible to expose some notion of application
resource identity in the URL (since JACC
permissions constructed by the container can
include URLs). Policy could be enforced based
on extracting application-respource ids from the
URL. This intrudes upon the web-application’s
architecture a little, but might be useful in some
scenarios.

Using JAAS alone has some shortcomings
when it comes to fine-grained access control.
Consider the following example, which requires
evaluation of access-control policy on each
iteration of a loop (the example filters out
distribution lists a user is not allowed to view):
public HTML display(List<ContactContainer>\
 contactLists) {
 Subject.doAs(getSubject(), new
 DisplayListsAction(contactLists));
}
public class DisplayListsAction implements
 PrivilegedAction {
 private List<ContactContainer>\
 contactLists;
 public
 DisplayListsAction(List<ContactContainer>
 lists) {
 this.contactLists = lists;
 }

AUUG 2004 - Who Are You?

Using JAAS and Sun Java System Access Manager to authenticate federally-identified users of a web-application 177

 public Object run() {
 HTMLBuilder builder = new HtmlBuilder();
 for (ContactList list : this.contactLists)
{
 try {
 Permission seePermission = new
Permission(Helper.getObjectId(list), “see”
);

AccessController.checkPermission(seePermissi
on);
 builder.add(list);
 } catch (SecurityException ignore) {
 }
 }
 return builder;
 }
}

There are at least 3 reasons for not doing this
with JAAS:

1. we create a new Permission each time
through in the loop;

2. checkPermission is a potentially expensive
call (especially it it consults a remote server);

3. generating and catching an exception on
failure is also quite expensive.

Policy API on Sun’s Access Manager is in
some ways better:

 PolicyDecision getPolicyDecision()
 boolean isAllowed()

These don’t throw exceptions, and
getPolicyDecision() can evaluate many things
in one remote call, but we could explore these
questions further.

7. Conclusion
Coding flexible access-control enforcements

points in a way that allows external policy-
evaluation is possible in both JAAS and J2EE. In
both cases, it makes no difference if identity is
truly federated or merely centralized. However,
not only can JAAS code not be used in a J2EE
container, but the J2EE container prohibits
reference to application resources when
evaluating policy, even though the container
may use JAAS itself.

Sun Identity Server provides services that
facilitates the use of both JAAS and J2EE API’s,
and centralized policy evaluation. To evaluate
policy with respect to application resources in
the J2EE case, we can use Identity Server specific
APIs.

The manner in which application-resource
attributes are made accessible to the external
policy-evaluator (and the programming
obligations thereof) need further exploration, as
do a few more ideas for escaping from the
limitations of J2EE.

Disclosures
David Bullock is a freelance Java

Programmer and director of Thrive Online
http://www.thriveonline.com.au. He has no
association with Sun Microsystems, and in no
way profits from the sale of Sun Java System
Identity Server.

References
[1] JavaTM 2 Platform Security Architecture,

Version 1.2. Li Gong. http://java.sun.com/
j2se/1.5.0/docs/guide/security/spec/
security-spec.doc.html

[2] User Authentication And Authorization In
The Java(TM) Platform. Charlie Lai, Li
Gong, Larry Koved, Anthony Nadalin, and
Roland Schemers. Proceedings of the 15th
Annual Computer Security Applications
Conference, Phoenix, AZ, December 1999.
http://java.sun.com/security/jaas/doc/
acsac.html

[3] Java Authorization Contract for Containers
Specification 1.0, Final Release. Java
Community Process. http://java.sun.com/
j2ee/javaacc/

[4] R. S. Sandhu, et al. “Role-Based Access
Control Models”, IEEE Computer 29(2): 38-
47, IEEE Press, 1996. http://
citeseer.ist.psu.edu/
sandhu96rolebased.html

[5] Sun ONE Identity Server Policy Agent 2.1
J2EE Agents Guide http://docs.sun.com/
db/doc/816-6884-10

[6] Sun Java Enterprise System 04Q2 http://
docs.sun.com/db/prod/entsys.04q2

[7] Sun Java System 04Q2 Identity Server. Sun
Microsystems. http://docs.sun.com/db/
coll/IdentityServer_04q2

[8] Sun Java System Identity Server 2004Q2
Developer’s Guide. http://docs.sun.com/
source/817-5710/index.html

[9] Sun Identity Server 04Q2 Developers
Guide, Chapter 8 - Policy API. Sun
Microsystems. http://docs.sun.com/
source/817-5710/
prog_policy.html#wp19788

[10] Konstantin Beznosov, Object Security
Attributes: Enabling Application-Specific
Access Control in Middleware http://
citeseer.ist.psu.edu/661542.html

[11] Access Policies for Middleware. Ulrich
Lang. http://citeseer.ist.psu.edu/
576094.html

[12] On the Role of Roles: from Role-Based to
Role-Sensitive Access Control. Xuhui Ao,
Naftaly H Minsky. SACMAT’04, June 2–4,

AUUG 2004 - Who Are You?

178 Using JAAS and Sun Java System Access Manager to authenticate federally-identified users of a web-application

2004, Yorktown Heights, New York, USA.
http://citeseer.ist.psu.edu/692537.html

[13] BBAE – A General Protocol for Browser-
based Attribute Exchange. Birgit Pfitzmann
and Michael Waidner. http://
citeseer.ist.psu.edu/
pfitzmann02bbae.html

[14] Federated Identity-Management Protocols
– Where User Authentication Protocols
May Go. Birgit Pfitzmann and Michael
Waidner. http://citeseer.ist.psu.edu/
670544.html

