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ABSTRACT
Existing network benchmark tools suffer from problems such asportability, poor

repeatability and inability to perform accuratetesting of high-throughput networks.

We have built a distributed benchmarking tool which solves many of these problems.
ipbench provides an extensible distribution framework and makes minimal demands of
the device under test.  We have fully implemented a latency test with many tunable
parameters and demonstrated moving other tests into the framework.

1. Introduction
ipbench1 is a distributed, extensible suite of

tests for gathering reliable performance data
from data networks.  Presently, internet and
ethernet protocols are supported, however the
addition of other protocols is feasible.

There were four main factors as driving
motivators for the creation of ipbench.  The first
reason was the scarcity of recognised benchmark
software in our domain.  We require targeted,
highly tunable benchmarks that allow us to
focus on evaluating the overheads of an
operating systemʹs handling of network packets.
Many existing benchmarks are focused on
userspace or underlying network benchmarking
rather than on the network protocol stack and
operating system implementation.

Secondly was the lack of scalability in
existing tests.  Gathering performance data often
requires the generation of throughputs beyond
which can be generated by a single host.  To this
end, some form of coordinated distributed
operation is required.  For example: gigabit
Ethernet is currently mainstream, popularity of
10 gigabit Ethernet is growing and even faster
optical technologies exist.  Generating sufficient
load with small packets on a single client is
generally not possible at these speeds.  Further
still, with the high speed of modern processors

overheads are often so low that useful and
reliable results can only be acquired with a lot of
data moving very quickly.  Whilst the problem
can often be worked around with existing tools
using a combination of remote shell scripts,
regular expression code on outputs and
programmer persistence, it was felt this was not
generally a good way to go about testing with
multiple clients.

Thirdly was the API requirements of most
existing benchmark suites. The general
architecture of the existing tools is to use a client-
server paradigm between the testing machines
and the device under test (DUT; where
appropriate we use terminology from [1]).
Whilst we believe it is reasonable to expect the
client to implement the full range of APIs
expected of a modern operating system, this
does not hold for the target device.  For example,
BSD sockets may not be provided on
experimental operating systems, and they may
not have anything near POSIX compatibility.
Another significant requirement is architecture
portability enabling easy testing in varied
environments.

Finally was the lack of extensibility of
existing benchmark tools. The authors had some
ideas for a number of tests that could not easily
be contained in existing network performance
tools.  Our goal was to make it easy to add new
tests into the framework.  Analysing the testing
procedure of many existing tools by source code
review is often a frustrating process, we wanted

1. This work is sponsored by The Gelato Foundation
http://www.gelato.unsw.edu.au and National
ICT Australia http://www.nicta.edu.au.
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to avoid this frustration for others as much as
possible.

2. Related Work
There are a number of existing benchmark

applications that failed to meet our criteria.

At the lowest end of the scale, a tester can
always use ad hoc testing with tools such as
ping (with the associated flood option) and
time to get some idea of network performance.
This is not, however, accurate to any great
degree.  Often researchers interested in IP
performance will construct their own small
benchmarks suitable to their work.  This reduces
the repeatability of their experiments for other
interested parties and raises the possibility of
uncertainty in test results.

NetPIPE [7] is one well known benchmark
that provides latency and bandwidth results for
a wide variety of environments, one of which is
TCP.  The first major hurdle to using NetPIPE in
our work was that even the latest released
version was not 64 bit safe as it makes
assumptions about the size of unsigned long
- whilst a trivial and common problem it failed
our requirement of portability.  Even with these
problems fixed we saw anomalous results (we
did not fully investigate these further and they
may not have been related to NetPIPE).
Architecturally, NetPIPE is started in either a test
or a listen mode; by requiring the full application
to run at both ends of the test it also failed our
API requirements.  There is also no inherent
remote operation in the code.

Netperf [4] is another well-known network
benchmark suite.  Copyrights in the source code
reveal it has existed for at least 10 years and is
still actively maintained.

Whilst Netperf is a widely used benchmark
it did not meet our requirements in a number of
areas.  Netperf follows a client-server model
and requires a separate netserver process to
be run on the DUT, hence failing the
aforementioned API implementation
requirements.  Netperf does not have any
inbuilt distribution of operation and it is not
generally suited to having multiple testers.
Clever features such as running a test multiple
times to get results that satisfy a particular
confidence interval unfortunately fail when used
with multiple testers as each tester lacks a global
view of the results.  Netperf also lacks some
features we considered necessary for measuring
OS performance such as tunable warm up and
cool down periods.

SPECweb99 [8] is a common test of overall
webserver performance with a similar multiple-

client/single server architecture to ipbench, but
we found it unsuitable for a number of reasons.
While SPECweb99 indirectly tests the
underlying network architecture, there are many
other variables that affect its performance.
Compontents such as choice of web server and
unrelated parts of the kernel such as disk
caching and memory utilisation code make
significant contributions.  It also has a coarse
grained reporting mechanism, only providing
the number of sustained connections over a time
period. Thus it fails our first requirement of
giving insight at the operating system level of
network handling.  It requires a fully functioning
HTTP server with a large data set on the DUT,
failing our API implementation requirements.
The test is also not freely available, which we
consider a disadvantage.  This said, our
experiences with the distributed client
architecture of SPECweb99 has had a positive
influence on our independent design of
ipbench.

Other common tools for network
benchmarking are a combination of httperf [6]
and a web server such as µserver [2, 3].
httperf requires a server capable of accepting
HTTP requests and recommends the use of
multiple clients to generate sufficient and
reliable loads on the server.  Some of the ideas for
ipbench came from our rudimentary patching
of httperf for synchronised remote operation.
We see our work as being complementary to
these tools; whilst they are excellent at providing
insight into the overall performance of a kernel
with something approaching realistic work (i.e.
a HTTP server) we hope to provide more details
on the network stack implementation utilised by
these tools.

3. Architecture
The overall goal of ipbench is to concatenate

results from a number of synchronised remote
testers each individually performing the same
test at a single DUT (see Fig. 1).

Figure 1: Overview of the ipbench architecture.  Dark
lines represent essential components of the test, lighter
lines are optional components.  Medium grey lines
represent data sent during the test.
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Specifically

1. The user interacts with the controller,
specifying the test   (plus any parameters)
and the target machine to test.

2. The controller sets up and synchronously
starts the remote testers.

3. Testers run and complete the specified test.

4. The controller receives test results from
remote testers,  aggregates the data and
reports the results to the user.

We have designed the basic architecture of
ipbench with three components: a controller,
any number of testers and a target DUT.

The testers are controlled by the controller,
and execute their test procedures targeted at the
DUT.  On each tester an instance of ipbenchd is
started which listens for incoming test requests,
sets up and performs the test and finally relays
its results to the controller. ipbenchd is targeted
at running on a fully featured client as it may
have significant memory or processing
requirements.  Ideally the tester would have two
interfaces — one to the controller network and
one to the DUT network, however no
information is passed between tester and
controller during testing so not having this setup
should not adversely affect results.

The controller is also expected to be fully
featured as it will be aggregating the data from
the (potentially many) clients.

In our earliest revisions both the testers and
the controller have all tests inbuilt statically.
Later revisions allow the loading of tests via
prebuilt shared objects.

We have made it possible for the DUT to
execute a “companion” testing procedure and
return results as part of the test (for example, to
measure used CPU time on the DUT).  For this
case, the controller will need a physical interface
able to talk to the DUT and the DUT must be
running the ipbenchtd test daemon
(illustrated by the lighter lines in Fig. 1).  This is
an optional component and whilst it may
provide useful extra information, there is no
requirement that it be used.  Thus the range of
services required by the DUT varies; our existing
test requires nothing more than a standard echo
service, other tests may require more complex
services such as HTTP.

We found this architecture to be very useful
in practice; persons interested in testing can run
the controller on their local PC, receiving the
result data directly and using it as they wish.
The testers, as remote daemons, once started
require no further intervention.

3.1 Protocol
The controller and clients use a simple

protocol to interact.  A typical session begins
with the controller sending an IPBENCH_SETUP
message to the testers ipbenchd daemon
containing the index of the test to run, the DUT
hostname and port, and any test arguments.
Each tester responds with either
IPBENCH_SETUP_OK or one of two error
conditions, IPBENCH_SETUP_ERR or
IPBENCH_BUSY (if a test is already running).

If the user specifies the companion test
should be run on the DUT during testing, a
similar procedure is followed with the
ipbenchtd daemon running on the DUT.

Once all components have reported in, the
controller sends an IPBENCH_START command
to all testers (and the DUT, if required).  Initially,
the option of passing a timestamp or holdoff
time to begin the test was proposed, however
during development it became clear that the
implementation of such a feature should be left
to each individual test (see the description of the
warmup and cool down periods of the latency
test on page 166 for an example).  Each tester
proceeds to execute its test, and when finished
marshals its results to send back to the controller.
At this point, some processing may be done by
each tester, and if one decides the test was
inaccurate for some reason (for example, the
standard deviation of results was too high) it
may flag its data as invalid.

Once the controller has received return data
from each tester, if the DUT is running a
companion test the controller will send an
IPBENCH_STOP message.  The DUT will stop its
test, marshal its data and send it to the controller.  

Once all data is received by the controller it is
unmarshalled, analysed and any required
calculations performed.  Finally, the controller
will output final results ready for further
analysis.

3.2 Test Interface
We designed the test interface to be as simple

as possible.  Such an open framework moves
programming work to test authors, but
maximises the extensibility of the program.

The interface below must be implemented by
each test2.  The interface is generally
straightforward, the only moderately complex
parts are the marshalling/unmarshalling of
arguments and the eventual passing of
arguments to the output function.  By clever use

2. Later versions implement tests as loadable shared
objects and use a slightly updated structure with some
extra header information.
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of structs and casting the resulting code can be
quite simple.

struct client_data
{
  void *data;
  size_t size;
  int valid;
};

struct test
{
  char *name;        /* Test name    */
  int id;            /* Test ID      */
  char *descr;       /* Description  */
  int default_port;  /* Default Port */

  int (*setup)(char *hostname, int port, 
      char* arg);

  int (*start)(struct timeval *start);
  int (*stop)(struct timeval *stop);

  int (*marshall)(void **data, 
      size_t *size, double running_time);
  void (*marshall_cleanup)(void **data);
  int (*unmarshall)(void *input, 
      size_t input_len, void **data, 
      size_t *data_len);
  void (*unmarshall_cleanup)(void **data);

  int (*output)(struct client_data *target,
               struct client_data data[], 
               int nelem);

  struct test_target_code *target_code;
};

The setup(), start() and stop()
functions should behave as their names imply.
The arguments to start() and stop() should
be timestamped by the functions, the difference
is passed to marshal() as the running_time
argument of the test; this may be useful for
calculations before sending back to the
controller.

The client’s marshal() should wrap up all
data for sending back to the controller into its
data argument.  The client may do some
analysis of its data and if it decides that the
results are outside predefined limits may return
a non-zero value to flag the testing data as
invalid.  The test should always marshal some
data no matter how invalid — the information is
still useful for debugging. Companion cleanup
functions are provided to facilitate freeing of
dynamically allocated memory.

The target_code pointer points to a
structure very similar to the test structure
which specifies that the companion test to be run
by the DUT target daemon.  At runtime, if the
user specifies the companion test should be
executed on the DUT (with the --target
command line switch) it will be started, stopped
and queried similar to a test client.

The controller will receive the data from each
client and pass the data to the unmarshal()
function; storing the result in an array (struct
client_data data[]).  The output()
function is called with this array, a count of how
many elements are in that array and, if available,
results from the DUT companion test (struct
client_data *target).  The output()
function thus has all the data from each client,
and should analyse this information and
construct output in a format suitable for further
analysis.

The valid flag of the client_data struct
will only be set for data that was flagged as
correct by the marshal() functions; it is up to
output() to decide on the overall validity of
the test in some form or another.  It may choose
to ignore some invalid values, however if it
decides all of the test data is outside acceptable
parameters it may return a non-zero value and
the test will be rerun up to a number of times (as
given by the user with --test-retries).

4. Tests

4.1 Latency
The first test instrumented with our tool was

a latency test.  The standard method for
measuring latency is to send a short request to
the DUT and await a reply for that request,
measuring the time delta. Our test requires only
a standard echo service to get this information.
The crucial part of the test occupies a single
function of around 60 lines of C code.  It is a
single threaded test utilising non-blocking IO.

The test has a number of tunable parameters
as shown in Table 1.  We have not found any
other network testing tool that makes it as
straightforward to measure latency at varying
throughputs, and we feel this is a major
advantage of our tool.

The test works with each client recording a
large number of individual latency samples
(statically selected at compile time).  For each
sample a packet of size is sent, and when that

Argument Description Default
bps|Mbps Throughput to attempt 10Mbps
size Size of messages in bytes 100
nodelay Set TCP_NODELAY yes
bufsiz Send and receive buffer size OS Default
warmup Warmup time in seconds 5s
cooldown Cooldown time in seconds 5s
socktype Socket type (TCP/UDP/RAW) TCP
sockopts Socket Options
iface Interface to use (RAW only) eth0
drop Time before considering UDP 

packet dropped in seconds
2s

Table 1: Tunable parameters for the latency test
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packet is received the latency (elapsed time)
recorded.  The typical size of a result during our
testing was a total of ~ 10MiB (7 clients with
200,000 individual latency results, each a 64-bit
integer).

Throughput control is achieved by keeping
track of the number of packets actually sent
versus the number required to be sent to achieve
the specified throughput bps. In the situation
where the DUT is falling behind (i.e. not
responding fast enough) the client will simply
sustain sending packets at the requested
throughput.  In the advent the client gets ahead,
it will busy loop until required to send the next
packet, effectively throttling itself.  We found
this method more reliable than putting the
process to sleep whilst waiting to send the next
packet.

Each client will calculate the actual
throughput it achieved and report this figure in
its results.  Ideally, this will be within a few
percent of the requested throughput — if it is not
it indicated the DUT could not keep up with the
requests.

To handle UDP (where guarantees are not
made about packet delivery) a high performance
method of calculating dropped packets was
required. For this we implemented the drop
parameter which influences the length of an
outstanding packet list.  As we know the packet
size and the throughput, we can work out the
length of the packet list required for a given drop
value.  Figure 2 illustrates the process.  By
keeping a sequential index in each echoed
packet and a head of the queue pointer, any
unreceived packets with indexhead - indexreceived ≥
packet_list_length are considered timed out and
dropped.

RAW packets are created by simply packing
a specific protocol header, source and
destination MAC address and a 64 bit stamp into
a Ethernet frame.  By utilising RAW packets the
IP stack of the operating system should be
bypassed, giving a direct reflection of the
latencies incurred by the driver and underlying

network.  The receiving end must implement an
echo service which takes any Ethernet frame
with the specific protocol code and swaps the
source and destination addresses and sends the
frame back.  The only requirement for running a
raw test is that the target must be passed as a
colon deliminated MAC address, rather than a
hostname/IP address.

Warmup and cooldown times are critical to
allow both the DUT and the network time to
stabilise before running the test. Each client will
run for the warmup time before starting to take
latency results, and will continue to run without
taking results for the cooldown time.  This
amortises any slight overlapping of clients
starting and stopping their measurements.

The DUT can also be requested to keep track
of its CPU usage thanks to a modified version of
cyclesoak [5].  System usage is calculated with
a low priority process that “soaks” all available
idle usage. The CPU monitor will not record
results during the warmup period, and discards
any results taken in the last cooldown seconds
from the time it is told to stop.

4.1.1 Test Examples
Some examples of data collected with the

latency test are presented in Fig 3.

These examples were collected while testing
the relative performance benefits of varying
interrupt holdoff times for a network card
driver. Interrupt holdoff describes the amount of
time to wait before delivering another interrupt
to signal an incoming packet.  This allows the
kernel to process more of the already received
packets before being interrupted to handle any
new ones, increasing throughput.  The corollary
is that latency (amount of time to respond) goes
up, as the network card is deliberately holding
back processing of packets.

The latency test can also be used to indirectly
measure throughput (Fig. 4).  Each client reports
the actual throughput it achieved for each run,
and these can be summed to get a measure of the
total throughput for the network card.
Measuring throughput like this requires
multiple runs, each time increasing the
throughput requested from each client.

4.2 Discard Test
The discard test is similar to the latency test,

however the round trip time of the packets is not
considered.  At the DUT end, a special kernel
module that simply counts the incoming packet
and discards it is run.  These values are reported
back by the ipbenchtd invocation on the DUT.
The clients collectively count their outgoing
packets, and at the end of the test the two figures
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Figure 2: An example of filling the packet list to handle
UDP packets. Numbers represent index of sent packets.
Filled boxes represent the packet list head pointer.
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are compared to give a reference of how many
packets were dropped.

4.3 tbench Throughput test
We have instrumented Andrew Tridgell’s

tbench (a subset of the dbench test [9]) as a
form of throughput test. This test requires a fully
featured DUT as it must run the dbench echo
program.

Each of the clients runs the tbench test much
as it would if run “out of the box”; however we
have the added advantage that we can easily
synchronise many distributed clients.  The
controller aggregates all results to give a total
throughput.

This benchmark has not been extensively
tested in this environment, however it was
mostly instrumented as a proof of concept of our
overall API architecture.  It required less than a

day of coding, and we feel it illustrates the
flexibility of our approach.

4.4 Further Tests and Future Work
We have a number of ideas for further tests

under various stages of construction.

• An explicit throughput test as either an
expansion of the tbench test or re-
implementing with something else.

• A SPECweb99 style HTTP server test.  This
would be a test that stresses a webserver.

• A distributed NFS benchmark where many
clients can stress a single fileserver.

5. Experiences from 
implementation

After implementation, we have identified a
number of areas where our implementation has
succeeded and a number that require further
thought.

5.1 Modularisation of tests
Allowing a fairly straight forward API for

implementing a new test was a success and
allowed rapid development and tweaking of
tests.

5.2 Remote Invocation Protocol
During ongoing use it became apparent that

it would be useful to bypass direct invocation by
the controller and have the ability to manually
interact with clients.  This is not possible with the
binary protocol ipbench implements. A
simpler architecture is one such as that used by
SPECweb99 where each client simply exports a
control interface that is equally well utilised by
the controller or a telnet session (assuming
one knows the correct sequence of commands to
send!).

Another important factor in designing the
protocol, especially during early development,
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Figure 3: Minimum, median and maximum latencies for
varying interrupt holdoff times, as measured by the
ipbench latency test.
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is versioning.  By making part of the protocol
include a version stamp you can avoid the
“Murphyʹs Law” case of mixing different
development versions of clients and servers.

One criticism might be that we have
implemented a protocol that could be realised
with existing technologies such as RPC, CORBA,
MPC or XML-RPC.  These protocols tend to be
aimed at at transferring complex states between
distributed applications, something ipbench is
not overly concerned with.  The added
complexity these protocols bring was decided to
outweigh their advantages.

5.3 Error reporting
In a distributed system, reporting errors from

many clients back to the controller is an
important consideration.  ipbench does not
always handle this case well.  Some way of
flagging global exceptions and recovering all
clients to a stable state is required for
consistently reliable operation even after failure.

Additionally, ipbench was developed
around a fairly ad-hoc state machine mostly
designed in our heads.  Formalising and
implementing a state machine for client
operation more concretely would also have
helped with handling error conditions.

5.4 Division of tasks within the test
One area of partial success and partial failure

is the division of work between the framework
and the individual tests.  For example, requiring
data be marshalled into a simple array of bytes
sent over the wire to the controller for
unmarshalling was a successful design idea, as
both test and client code was simplified by the
assumption.

However, our initial design of having client
code signal to the test to end after a specific
period of time was not as successful.  Not all tests
run for a constant specified period of time; often
they will be measuring the time to do a set
amount of work.  Those that do run for a
constant time can easily implement their own
alarm/signal handler to stop themselves,
possibly taking timeout variables in their
argument.

It is difficult to glean these insights before
developing the tool, especially with the relative
lack of prior work to go from.

5.5 Choice of language
C was probably the wrong choice of language

for the ipbench daemons. The work they do is
mostly confined to setting up communications
(via sockets) and processing protocol

commands.  Many current scriptable languages
such as Perl and Python make these sorts of tasks
almost trivial with inbuilt libraries and simple
string manipulation options.

However, writing tests in C is the correct
choice.  Tests such as the latency test are
extremely performance sensitive, especially
with regards to system calls.  In this case the
inbuilt convenience libraries of the scriptable
languages become a liability as they often
introduce unacceptable overheads.  C also
makes it straightforward to wrap existing tests
(largely already written in C) into the ipbench
framework.

6. Conclusion
We identified a number of problems with

existing network benchmark suites such as lack
of scalability, API requirements and portability
concerns.  We have implemented a new
distributed testing framework which avoids
these problems.  We have fully implemented a
latency test that has a number of unique options
such as easily tunable throughput control and
demonstrated easily extending the test.  We have
also demonstrated the ease of porting an existing
test into the framework. At this time, our work is
ongoing.

6.1 Code Availability
The code and documentation for ipbench is

available at http://ipbench.sourceforge
.net.  It is released under the GPL.
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