
AUUG 2004 - Who Are You?

Characterising Sun Ray™ Thin Client Performance 155

Characterising Sun Ray™ Thin Client Performance
Richard Smith

Sun Microsystems

<richard.smith@sun.com>

ABSTRACT
Thin clients have different performance characteristics to traditional ʺfatʺ clients, and

there are workloads with which they may struggle. Added to the mix can be many layers
of software, each with its own set of performance foibles. Since thin clients are often
deployed in situations where Total Cost of Ownership [TCO] is a significant factor, a key
question is how many users can a given solution support.

The paper discusses modelling the performance of Sun Microsystemsʹ Sun Ray™ thin
client solution for various workloads, and identifies some of the significant factors to be
incorporated in sizing and capacity planning.

1. Introduction
Sun Ray thin-client appliance (desktop unit

or DTU) and associated server software provides
an alternative to traditional fat clients for
desktop computing. In this architecture, the
DTU provides display services and typical
human input devices, such as keyboard and
mouse, through which a user accesses their
applications. Other than its ethernet address it is
stateless. All state information and application
functionality is kept on an associated, centrally
managed server.

Communication between the server and DTU
is via a set of proprietary protocols implemented
on top of UDP, generally on a private ethernet
network. The protocols provide for session
management, device management, rendering
and interaction, along with adding reliability to
UDP.

A key part of the architecture is that each
session is associated with its own X server. X
servers generally have a device independent
part, DIX, and a device dependent part, DDX.
On Solaris, /usr/openwin/bin/Xsun
provides the DIX part, and dynamically loads
shared libraries that implement the DDX part.
For Sun Ray the DDX part is /usr/openwin/
server/modules/ddxSUNWsunray.so.1.
This converts between X11 and Sun Ray
protocols. Internally it maintains a virtual frame
buffer and maps changes to the contents into
Sun Ray protocol such that what is displayed
mirrors the virtual frame buffer. Incoming
mouse and keyboard events form a DTU have to
be converted into X events. In this way a user
interacts, via a DTU and X server, with a set of X
applications.

The applications themselves need not be local
to the Sun Ray server. They can be remote X

applications (since X is inherently network-
based), or alternatively remote desktop
protocols like RDP, VNC or Citrix ICA can be
used to access both X- and non-X applications on
remote servers.

This architecture has several potential
benefits for an enterprise:

• Lower administrative cost. Administration is
centralised, with far fewer servers to be
maintained than the number of DTUs
supported.

• No state information is kept on the DTU so
there is nothing to be installed and no data
that can be lost if the DTU dies.

• Through the Hot Desk capability, user
sessions can be moved from one DTU to
another without requiring an intermediate
logoff and logon. The sessions continue to
exist when unbound from a DTU.

• Security is enhanced since there is no data
kept locally to be misappropriated, and with
recent versions of the server software and
appliance firmware data can be strongly
encrypted before transmission. Sun Ray also
has a builtin smartcard reader that can be
used for smartcard/token-based
authentication.

• The appliances themselves can be relatively
low-power devices that require no fan and
hence are very quiet. Other than the display
device, this means they can be quite
compact.

• Firmware updates are transparently
delivered to Sun Ray appliances on power-
up, or can be forced by administrative
command. Improvements can be delivered
without a massive rollout project.

AUUG 2004 - Who Are You?

156 Characterising Sun Ray™ Thin Client Performance

However there are performance implications
for users. They no longer have dedicated
hardware on their desktop running applications
locally and capable of writing directly to frame
buffer memory. This has the following
consequences:

• There is additional latency in user
interaction, such as responding to a button
press.

• DDX protocol conversion can use a non-
trivial amount of cpu time, especially for
high pixel-rate rendering.

• Since resources are shared, there is a non-
zero probability of contention. Contention
increases latency beyond what a user of a
lightly loaded system would experience.

So Sun Ray represents a tradeoff between the
benefits and performance implications.
Resource sharing is interesting because of the
extremely poor utilisation of the typical desktop
PC in a large organisation. Experience has
shown that these organisations rarely know
what the average utilisation of all their servers
are, but when it is measured, its down around
10%, with PCs at least an order of magnitude
worse. Part of the skill in a large Sun Ray
deployment then is to strike the right balance
between acceptable performance and higher
resource utilisation.

2. Case Study
The motivation for this paper came from the

authorʹs experiences in investigating
performance issues with a particular
deployment, and subsequent experiments in a
more controlled environment.

The applications to be delivered were typical
office productivity software such as Microsoft
Office97, Internet Explorer, and Adobe Acroread
running on a farm of Windows servers, accessed
via Citrix ICA client on the Sun Ray server.

Typical usage patterns were developed,
although not rigorously validated against actual
user usage. From testing, several performance
issues were identified and roughly categorised.
They were:

• Slow scrolling.

• Screen overruns, where scrolling or
highlighting failed to respond rapidly to
mouse button release.

• Stutter and slowness in PowerPoint
animations.

• Lag on mouseover.

The customerʹs acceptable performance
criteria included terms such as “smooth

scrolling”, “zero stutter”, “no overrun”, and
“instant update”. Its not possible to do anything
in zero time, nor is it possible to scroll things
more smoothly than a monitor’s refresh rate
permits, so some latitude needs to be given
when interpreting the criteria.

One cause of overruns was quickly identified
as a bug in the Citrix ICA client v7.08. This
manifested itself as a delay of over 5 seconds
from receiving an XButtonReleasedEvent
before passing on the equivalent event in ICA
protocol. Moving to ICA v7.19 seemed to fix this.

Another source of overruns was identified as
a bug in Office97, which is fixed in Office2003.
The problem also showed up when not using a
Sun Ray, which is a timely reminder that
performance problems can appear anywhere in
an overall solution, and it can take a careful
choice of a series of experiments to identify root
cause. It was certainly unfair to blame Sun Ray
for this one.

One common problem was the impact of
scrolling on performance. Scrolling is an
example of a high-pixel rate activity, in which a
large number of pixels on DTUʹs display screen
have to be changed repeatedly, many times a
second. As discussed in subsequent sections, the
current implementation is likely to develop a
bottleneck around the computation of changes
to regions of display space and transferring pixel
update data to the DTU.

A distinction needs to be made between what
an architecture imposes and what an actual
implementation does. There is room for more
efficient implementations of a Sun Ray X server.
Research continues in SunLabs and elsewhere
about mapping X protocol streams into Sun Ray
protocol to reduce bandwidth or make more use
of hardware capabilities. Since the initial
investigation into performance at the customer
site, there have been several improvements
shipped as patches to the Sun Ray Server 2.0
software.

3. Monitoring and Measurement
Understanding Sun Ray performance

involves building a picture of where time is
being spent and why. Its unrealistic to expect a
single tool to provide all the answers, and its
pretty hard to identify up front all the data that
may be required. In some sense its like detective
work, where evidence is collected which in turn
suggests further lines of enquiry.

The following are some tools and data
sources that may be of use when analysing Sun
Ray performance.

AUUG 2004 - Who Are You?

Characterising Sun Ray™ Thin Client Performance 157

3.1 prstat -mL
The prstat utility examines all active

processes on the system and reports selected
statistics. The -m option enables microstate
accounting for each process, so that Solaris
accurately measures the time spent in each
microstate (user cpu, system cpu, wait for cpu,
asleep, ...). Without microstate accounting, some
of the buckets are not maintained, in particular
wait for cpu time. Only the owner of a process or
superuser can turn on/off microstate accounting.

The -L option tells prstat to report on each
LightWeight Process [LWP] rather than at a
process level. An LWP is a unit of concurrency,
and can only use one cpu at a time. It can only be
in one state at a time, so that the sum of time
spent in each state should be 100%. A single-
threaded process has only one LWP, whereas
multithreaded processes usually have more than
one. Aggregate statistics for a multithreaded
process can be confusing compared to a set of
LWP statistics.

prstat has some weaknesses when trying to
get a picture of a system with a large number of
processes or LWPs:

• It rounds the data to relatively low precision.

• Its calculation of percentages is based on
process existence rather than width of
observation interval.

• Short-lived processes may not be captured.

It therefore can be useful to write a
supplementary tool to display data from /proc
pseudo filesystem at higher resolution, and
include child cpu time buckets. When a process
dies its cpu time is accumulated in the child cpu
time buckets of its parent.

3.2 pstack
Taking a snapshot of a processʹ stack gives

clues about where time is spent, as it shows not
just what is currently being executed but also all
the functions that directly or indirectly have
called it. Function names are often quite
meaningful or suggestive of their purpose. LWPs
that are asleep will often be inside poll() or
lwp_park().

3.3 performance data collector
A particularly useful tool for profiling

processes is the performance data collector and
analyser, the latest version of which is part of
Sun Studio 9. This takes regular snapshots of
process stacks (which includes LWP stacks for
multithreaded processes), so that a statistical
profile of where time is being spent can be built.
Each snapshot includes what the call stack looks
like, and what the current microstate is. A

timeline view can be displayed via the analyzer
GUI.

Unfortunately the author has had little
success in dynamically attaching to Xsun
processes. For profiling purposes on a
standalone system, one possibility is to edit
temporarily the /opt/SUNWut/lib/utxsun
script, which launches Sun Ray Xsun processes
when a user logs on.

3.4 interpose library
Shared libraries provide implementations of

APIs that a program can use without physically
including the functions in its executable text. At
runtime the loader dynamically loads shared
libraries into an address space as required. The
ldd command shows the library dependencies
for a program, and pldd command shows the
dependencies for an executing process.

Through the LD_PRELOAD mechanism, an
alternate implementation of selected functions
can be substituted for the originals. The alternate
implementation is still able to call the original
functions, but can do many other useful things
first, such as modify parameters, log details of
the call to a file, or measure the time spent in
each call.

3.5 truss -u
Recent versions of truss have added a

builtin interpose capability for shared libraries
that can be used to time entry and exit of
functions. For example calls to
newtCopyArea() can be logged:

truss -t!all -s!all -
uddxSUNWsunray:newtCopyArea -p pid

This can be fairly heavyweight so care needs
to be taken about how many function calls are
being interposed per second to minimise
performance degradation.

3.6 lockstat
The lockstat utility gathers and displays

kernel locking and profiling statistics. It can be
used to identify contention for kernel resources,
such as over a per-file POSIX RW lock. Another,
less obvious use, is to break down where system
cpu time is being consumed in the kernel. While
truss -c can be used on a process (with care,
since it does add some overhead), lockstat
can be used to get a system-wide view. It can also
be used to probe deeper than a system call, such
as working out how much cpu time consumed
by read() is due to disk i/o and how much is
network i/o.

Solaris 10 introduces a new capability,
DTrace, which is likely to become the tool of

AUUG 2004 - Who Are You?

158 Characterising Sun Ray™ Thin Client Performance

choice in the future when analysing kernel
activity.

3.7 kstat and SE Toolkit
Utilities such as vmstat, mpstat, iostat

and netstat have as their common source of
information the collection of performance data
maintained by the kstat facility. kstat was created
to avoid the security and maintenance problems
associated with commands having direct access
to kernel memory. The contents of kstat can be
collectively dumped via the kstat(1M)
command.

The SE Toolkit [www.setoolkit.com] uses a
scripting language to access and display useful
information from kstat and other sources. For
TCP network traffic, the author has found the
netstat.se script useful. The current Sun Ray
protocol implementation though uses UDP, for
which netstat.se is inadequate. However its
not hard to clone a new version based on
netstat.se that displays octets in and out per
interface. This of course includes UDP traffic.

3.8 utcapture
The utcapture -r tool collects data about

activity to and from Sun Rays every 15 seconds.
This includes packets sent and dropped, round
trip latency, and the number of bytes sent. Bytes
sent strongly correlates with cpu load on the Sun
Ray server.

3.9 /var/dt/st.n
Recent patches to Sun Ray Server 2.0 software

have added an undocumented file per Sun Ray
that is updated every second with performance
information. While some of the data is cryptic,
others can be identified with various kinds of
display function such as the Sun Ray equivalent
of an XCopyArea() from one region of display
memory to another.

3.10 pmap -x
Modern unices make heavy use of shared

libraries and Copy On Write [COW] to share
memory and reduce per instance memory usage.
Memory usage of a particular process can be
analysed via the pmap -x command, provided
care is taken to distinguish between shared and
private memory. Running out of main memory
can be diabolical for good interactive
performance, so the page scan rate (such as from
vmstat or sar) should be closely monitored in
a Sun Ray environment if it is much above zero.

3.11 android
Android is an open-source tool for recording

and playing back scripts of X11 interactions. The

initial capture is done by using an xscope
utility to interpose on X11 events being sent to an
application and placing details of keyboard and
mouse activity into a file. The script can then be
edited, cleaned up, modifed, and ultimately
played back through an X server via the XTest
extension. The synthetic user still needs to have
authority to connect to the Xserver, which in
some cases may involve copying a userʹs
.Xauthority file and using XAUTHORITY
environment variable to point to it.

This is one way of simulating a Sun Ray user,
although it is isn’t an exact workload match since
the input event processing doesn’t occur in the
same DDX module as a real user would.
However since rendering tends to dominate cpu
usage its a reasonable approximation.

4. Scrolling on Sun Ray
Since issues associated with scrolling seemed

to dominate the list of problems in the
deployment discussed previously, a special
focus was placed on how scrolling performed.
An X program was written that scrolled an
image endlessly, and provided a reproduceable
workload. The program had parameters to
control the window size, pause between scrolls,
and number of rows of pixels to scroll down
each scroll.

Scrolling down involves logically shifting
window contents up one or more rows of pixels
and rendering (painting) new rows of pixels at
the bottom. Just as in the movies, this could be
done by rendering an entire new frame each
scroll. However this would consume a lot of
unnecessary bandwith. In X applications an off-
screen image [pixmap] can be created in the X
server from which rectangular regions of pixels
can be copied to the display screen. This
dramatically reduces the bandwidth between an
X application [client] and X server.

Infact a pixmap and window are both objects
of Drawable type. X permits copying from one
region of a window to another even when the
regions overlap. Doing so saves even further
bandwidth, this time between the X server and
display device. In the case of Sun Ray
appliances, the display memory is really only
sufficient for the screen. Off-screen pixmaps are
held back at the X server. When scrolling by
copying from a pixmap, every pixel in the
window changes, and the current
implementation generates network traffic
proportional to the window size and scroll rate.
Worse, the analysis of changes to the display is
naive and consumes a lot of cpu time. The
network to the Sun Ray is easily saturated,
transmission of pixels dominates, and

AUUG 2004 - Who Are You?

Characterising Sun Ray™ Thin Client Performance 159

interactive reponse rapidly deteriorates. It is
therefore very desirable to maximise copying in
screen space, such as within a window.

One of the complaints about scrolling
performance on Sun Ray was the scroll rate, the
rate at which rows of pixels are moved up (or
down) the screen. Modern display devices
typically have a refresh rate between 60 and
78Hz, so it is not possible to display distinct
images faster than that. What this means is that
scrolling one row of pixels at a time per refresh
looks very smooth but is too slow for a typical
user moving around a document. It might take
10 seconds to move from one screenful to the
next. Instead, it is necessary to shift the window
by multiple lines per scroll. Using the interpose
library in Appendix A, it was observed that
acroread v5.08 shifted by 16 lines each scroll, at a
rate of about 20 scrolls per second.

In Table 1 two versions of a scrolling program
are compared for different window sizes. One
program uses a window-to-window copy, and
the other a pixmap-to-window copy. When the
system is allowed to scroll as fast as it can the
cpu time is naturally high, but the difference in
scroll rate between the two is dramatic! It
actually makes little sense to render faster than
the screen refresh rate, but a slow scroll increases
the likelihood of visual artifacts being apparent

from the failure to synchronise screen copying
with the screen’s VBLANK cycle. OpenGL
implementations [3D graphics] generally use
double buffering and synchronise buffer
switching with VBLANK to avoid this.

Taking deltas from a series of /var/dt/
st.n files at 1 second intervals gives more detail
about what is happening. Table 2 compares
1000x700 pause=10ms scroll=1 for the two
programs.

From this it appears that pixels counts the
number of pixels being changed on the screen
per second; bytes is a measure of bandwidth
used to the device; set counts new pixels sent to
the device (and each pixel takes 3 bytes for 24-bit
colour); and cpy counts how many pixels were
changed within the display device via a screen-
to-screen copy. The difference in pixels per
second for the two programs is huge: 64.4 MB/s
vs 2.7MB/s. Clearly finding ways of maximising
cpy over set is important for good
performance.

A quick check of rdesktop 1.3.1 via the
interpose library showed that it was using
significant screen to screen copies and with the
current Sun Ray stack it performed well when
scrolling in Excel:
 ms src dest srcx srcy w h dstx dsty
---- -------- -------- ---- ---- ---- ---- ---- ----

pause
(ms) scroll width height

screen to screen pixmap to screen

scroll/s usr sys MB/s scroll/s usr sys MB/s

0 1 1000 100 980 68 9 3.2 29 14 16 8.9

0 1 1000 200 568 74 6 1.9 16 16 14 8.9

0 1 1000 300 397 77 4 1.3 10 15 14 8.9

0 1 1000 400 304 76 3 1.0 7 16 14 8.6

0 1 1000 500 250 78 3 0.8 6 15 14 8.3

0 1 1000 600 207 77 3 0.7 5 15 14 8.2

0 1 1000 700 181 79 2 0.6 5 16 14 8.4

0 20 1000 700 90 47 10 5.7 5 16 14 8.4

10 1 1000 700 92 37 1 0.3 5 16 13 8.3

10 20 1000 700 92 49 11 5.9 5 16 14 8.5

Table 1: Two versions of a scrolling program are compared for different window sizes.

time tick pixels bytes set cpy

screen
to

screen

1.0 51 64,403,561 285,812 82,524 64,777,372

1.0 50 64,403,505 285,664 82,524 64,785,468

1.0 50 63,704,089 281,972 84,617 63,321,432

1.0 50 64,403,535 285,616 82,823 64,801,524

pixmap
to

screen

1.0 50 2,733,073 8,286,672 2,478,168 0

1.0 50 2,769,279 8,384,124 2,522,570 0

1.0 52 2,634,122 7,985,968 2,385,788 0

1.0 50 2,682,293 8,140,188 2,443,898 0

Table 2: Comparison of 1000x700 pause=10ms scroll=1 for the two programs.

AUUG 2004 - Who Are You?

160 Characterising Sun Ray™ Thin Client Performance

 0 00700002 00700002 2 231 749 300 2 143
 39 00700002 00700002 2 231 749 300 2 143
 0 00700002 00700002 2 231 749 300 2 143
 0 00700002 00700002 2 231 749 300 2 143
 30 00700002 00700002 2 231 749 300 2 143
 0 00700002 00700002 2 231 749 300 2 143

5. Conclusions and Future Work
Sun Rays can perform well for applications

that mostly paint forms. High pixel rate
applications, such as for scrolling, are more
challenging but can still perform acceptably if
the majority of pixels can be rendered via screen-
to-screen copying. This is determined by the
nature of applications and how they are written.

There is scope for future implementations of
Sun Ray X servers to be more intelligent in
mapping X11 protocol to Sun Ray protocol. By
tracking regions of pixmaps copied to the
display screen, it is in principle possible to make
greater use of the much more efficient screen-to-
screen copy. Another strategy is to reduce the
number of “frames” rendered per second
dynamically. The cpu cost of rendering to the
virtual frame buffer is much less than the cost of
analysing and sending pixels to the DTU.
Accumulating changes in the virtual frame
buffer before updating the screen could lower
the cpu cost, but add latency.

Outside of the Sun Ray system itself,
additional protocols may be involved and which
also need to be managed and measured. These
include various remote desktop protocols.
Future work would be to extend the analysis of
where time is spent to incorporate the end-to-
end response time of a deployment using these
protocols.

AUUG 2004 - Who Are You?

Characterising Sun Ray™ Thin Client Performance 161

Appendix A
/*
 * Example interpose library--to compile:
 *
 * cc -I/usr/openwin/share/include/X11 -Kpic -G \
 * interpose.c -o libinterpose.so
 * LD_PRELOAD=./libinterpose.so cmd ...
 */

#include <X11/Xlib.h>
#include <stdio.h>
#include <stddef.h>
#include <dlfcn.h>
#include <time.h>

static int (*xcpy_handle)(Display *, Drawable, Drawable, GC,
int, int, unsigned int, unsigned int, int, int) = NULL;
static hrtime_t t1, t2;
static int nlines = 0;

#pragma init(initptrs)

void initptrs(void)
{
xcpy_handle = (int (*)(Display *, Drawable, Drawable, GC,
int, int, unsigned int, unsigned int, int, int))
dlsym(RTLD_NEXT, "XCopyArea");
t1 = gethrtime();
}

static void header(void)
{
printf(" ms src dest srcx srcy w h dstx dsty\n");
printf("------ -------- -------- ---- ---- ---- ---- ---- ----\n");
}

int XCopyArea(Display *display, Drawable src, Drawable dest,
GC gc, int srcx, int srcy, unsigned int w, unsigned int h,
int dstx, int dsty)
{
if (nlines == 0)
header();
nlines++;
if (nlines >= 20)
nlines = 0;
t2 = gethrtime();
printf("%6.0f %8.8x %8.8x %4d %4d %4u %4u %4d %4d\n",
(t2 - t1)*1e-6,
src, dest, srcx, srcy, w, h, dstx, dsty);
t1 = t2;
return xcpy_handle(display, src, dest, gc, srcx, srcy, w, h, dstx, dsty);
}

AUUG 2004 - Who Are You?

162 Characterising Sun Ray™ Thin Client Performance

