
AUUG 2004 - Who Are You?

Combatting Email Borne Pests using Open Source Tools 79

Combatting Email Borne Pests using Open Source
Tools

Joel Sing
Director, Ionix Technology

<joel@ionix.com.au>

ABSTRACT
Recently, the number of email borne pests has increased significantly, causing a flood of

useless email to arrive in user mailboxes. This paper details the tools and techniques used
by a small hosting provider, in order to combat these pests, namely virii and spam. The
methodology used in designing the mail scanning system is detailed, including policy
decisions made regarding quarantining, bouncing and notifications. Finally, the
effectiveness of the implementation is discussed, along with details of possible future work.

1. Introduction

Over the last couple of years the number of
viruses being transmitted via email has
increased significantly, as has the number of
Unsolicited Commercial Email (UCE) messages,
more commonly known as spam. These email
borne pests cause a flood of useless email to
arrive in user mailboxes, wasting both time and
money, severely impacting the usability of this
communication medium.

This paper details the tools and techniques
used by a small hosting provider, in order to
combat these email borne pests. In the past a
number of simple configuration settings have
been used to reduce the amount of spam
received. Whilst this proved to be suitable for a
period of time, it has become ineffective as
spammers became more desperate and began
using a number of different techniques to
circumvent these tools. Many of the techniques
used by spammers in an attempt to avoid
detection are discussed in section 2.2.

The methodology used in the design the mail
scanning system, including policy decisions
made regarding quarantining, bouncing and
notifications, is detailed in section 4. An in-depth
discussion regarding the selection of each tool is
provided in section 5, with the implementation
and configuration of the entire system being
covered in section 5.2; information regarding the
addition of greylisting[17] can be found in
section 6. Finally, the effectiveness of this
implementation is summarised in section 7, with
details of possible future work being given in
section 8.

2. Email Borne Pests

2.1 Virii
In recent years there has been a large increase

in the number of viruses and worms that spread
themselves via email, the Melissa virus released
in 1999 arguably being the start of mass-mailing
virii/worms. Email is a simple and effective
means of transferring data between systems, in
this case the data being executable content. In
addition, a large number of security issues with
Microsoftʹs email clients have allowed a number
of viruses to spread and invoke themselves
without the user doing anything more than
simply viewing the message. Email borne
viruses range from being virtually harmless,
doing nothing more than spreading themselves,
through to being potentially devastating.

2.2 Unsolicited Commercial Email
Simply put, Unsolicited Commercial Email

(UCE) is email that you receive without ever
having requested it, typically being of a
commercial or advertising nature. UCE, more
commonly known as spam, requires minimal
effort and cost to send, allowing spammers to
deliver millions of messages a day. Given the
minimal costs involved, only a small conversion
rate is required to make it worth their effort;
unfortunately there are people who purchase a
product or service that is advertised via spam.

Over the last couple of years spam has
become increasingly difficult to identify using
content and header analysis. Most spam is sent
using a forged sender address, meaning that the
message appears to be sent from someone other
than the originator. This has the side effect of
bouncing all rejected and undeliverable
messages to the email address that appears to be
the sender. In order to defeat spam identification

AUUG 2004 - Who Are You?

80 Combatting Email Borne Pests using Open Source Tools

tools, particularly those that do content analysis,
spammers munge content by intentionally
misspelling words and substituting numbers for
letters. Random words are often added to
messages or even entire paragraphs of text from
various sources, also in an attempt to bypass
spam filters. It is worth noting that whilst nearly
every part of a spam message can be modified or
falsified, the most critical part from a spammers
perspective, the URLs within the message,
typically cannot.

To further complicate matters, spammers
typically use open relays to deliver their
messages. This has the affect of masking the
original system from which the spam was sent,
making it difficult to use IP based blocking. A
number of the viruses/worms that have
appeared recently have built in SMTP[18] relays
that spammers use to their advantage - a number
of sources suggest that there is a distinct
connection between these viruses and a number
of organisations who send spam for profit.

Another technique that spammers use in
order to avoid detection is the delivery of email
to secondary or tertiary mail exchangers, instead
of delivering mail directly to the primary mail
exchanger, even if it is available. This means that
IP based blocking will not work for any email
that is delivered via mail exchangers that are
outside your control. In many situations a
corporate level ISP will provide an offsite mail
exchanger as part of the connectivity service; for
obvious reasons the same tools used to combat
email borne pests cannot be deployed on this
system.

2.3 Reasons to Engage in Combat

There are a number of reasons to combat
email borne pests, ranging from bandwidth
usage to the prevention of virus transmission.
From a corporate perspective, spam is extremely
destructive. Huge amounts of time can be spent
sorting through one’s inbox to separate
unwanted email from wanted email, which only
adds insult to injury. The bandwidth used by
both virii and spam will typically incur per
megabyte charges from the upstream ISP and for
those who do not have access to broadband and
are either using a dialup or mobile connection,
significant time can be wasted waiting for
unwanted email to download.

In addition, the receipt of email messages
that are transporting virii increase the possibility
of infection, namely for our Microsoft based
counterparts. For non-Microsoft based users, the
bandwidth and time taken to download and
delete each message adds up.

3. Techniques for Combatting
Email Borne Pests

The first step in combatting email borne pests
is identification, in other words separating the
pests from the real email. The action that is taken
following identification will depend on the form
of identification used and the policies that are in
place.

Initially, email borne pests were identified
manually with sender address/domain and IP
based blocklists being manually maintained.
The effectiveness of these two blocklists
combined was fairly high, although maintaining
the lists was a time consuming and manual
process. The primary downside of this approach
is that one has to receive the spam before it can
be added to the blocklist. Over the last year or
two this process has become less and less
effective as more and more messages are being
sent with forged from addresses and via SMTP
servers that are open relays or zombies.

The first line of defense is blacklisting via
sender IP address. This allows for SMTP servers
to reject the receipt of messages from specified
senders or for the TCP connection to be denied
altogether. Given that large amounts of spam
originate form a small number of systems, the
effectiveness of a well maintained blacklist, such
as those provided by the Spamhaus SBL and
XBL, can be extremely effective.

The second line of defense is blocking by
envelope sender. Many SMTP servers can be
configured to reject messages from specific email
addresses or originating domains, Qmail[13]
being no exception with its support for
badmailfrom. It is worth noting that this is trivial
to work around by changing the email address
specified during the MAIL command of an
SMTP session, however it is fairly effective
against small time spammers, typically those
companies that do their own unsolicited mass
mailouts.

At this point, the email message has typically
been received by the SMTP server, hence the
bandwidth and associated SMTP processing
costs have been incurred. Analysis of the actual
email message can now be performed using a
large number of different techniques and tools.
These include virus scanning and various forms
of content analysis. Depending on the outcomes
of the analysis the message may be delivered to
the intended recipient, tagged and delivered,
quarantined or deleted.

4. Design and Policy
As previously indicated, the action taken

after identifying an email borne pest depends on

AUUG 2004 - Who Are You?

Combatting Email Borne Pests using Open Source Tools 81

the policies in place. The basis of all policy
decisions is that no email message should
disappear into the ether; a message should either
be rejected during the SMTP session, bounced
(returned to the sender), quarantined or
delivered to the recipient. A number of different
policies were applied, depending on the type of
pest and when and how it was identified.

4.1 Virii

All virii should be accepted by the mail
system and silently quarantined. No notification
should be sent to the sender nor the intended
recipient, however the system administrator
should be notified via email. Given that nearly
all viruses transmitted via email use fake sender
address, returning a notification to the person
whom appears to be the originator will often
result in emailing an innocent bystander. This
typically results in additional email traffic due to
bounce messages (where the email account does
not even exist) or an annoyed person who is
getting notifications regarding viruses that they
never transmitted, causing them to have mail in
their mailbox that they have to delete. Likewise,
the intended recipient should not be notified as
they do not need to know that someone sent
them a virus; it is just more unwanted noise.

4.2 Spam

The policies for spam are somewhat more
complex than those for virii, primarily due to the
fact that there are multiple points at which it can
be identified and the accuracy is not always
absolute.

1. An SMTP connection that originates from a
host on a designated blacklist will be
terminated with a hard error code, causing
the message to be returned to the sender.

2. An SMTP session that receives a MAIL
command specifying a sender address or
domain that is on the sender blacklist will be
terminated with a hard error code, causing
the message to be returned to the sender.

3. Spam that is identified via content analysis
will be tagged via the addition of X-Spam-
Status: and X-Spam-Level: headers to the
email message, prior to final delivery. This
allows for optional filtering by the final
recipient.

It is worth noting that this policy was altered
slightly when greylisting was introduced, as
detailed in section 6.

5. Tools — Selection and
Implementation

A number of tools have been used in order to
successfully implement this project. This section
details the criteria used to select tools, along with
the implementation and configuration used to
deploy the project.

5.1 Selection
The following criteria has provided a basis

for selection. Tools must be:

• Open source

• Secure

• Reliable

• Modular

• Easily configurable

• Low maintenance

• Effective

The tools selected, using this criteria are:

• Qmail[13]

• Ucspi-tcp[14]

• Spamhaus SBL/XBL[10]

• Spam URI Realtime Blocklist (SURBL)[12]

• Qmail-Scanner[16]

• Clam Anti-Virus[1]

• SpamAssassin[7]

• SpamCOP-URI[8]

• OpenBSD[3]

5.1.1 Qmail
The Qmail MTA was selected due to its

modular design, along with its high level of
security and reliability. Additionally, staff are
already familiar with the administration and
configuration of Qmail as it has already been
heavily used in the past, removing an
unnecessary learning curve. Likewise, the ucspi-
tcp tools are very configurable and modular,
having also been used for numerous years,
alongside Qmail.

5.1.2 Qmail-Scanner
Qmail-Scanner is a content scanner and

appears to be the obvious choice for performing
content analysis on a Qmail based mail server.
Written in Perl, it is highly extensible and easily
configurable, working with a very large range of
anti-virus packages, both commercial and open
source. Qmail-Scanner will, depending on
configuration, check to ensure that a message is
RFC2822[19] compliant, check that MIME types
match file extensions, block delivery of

AUUG 2004 - Who Are You?

82 Combatting Email Borne Pests using Open Source Tools

particular file types (eg. VBS and EXE
attachments), scan the contents for virii, perform
spam identification and more. Many spam
messages have headers or MIME boundaries
that are not compliant with RFC2822, causing
them to be quarantined.

Obviously the overhead of a Perl based
scanner needs to be taken into account, given
that it is invoked for each and every incoming
mail message. In this day and age, computing
power and main memory are both cheap,
making this far less of a concern.

5.1.3 Clam Anti-virus

Clam Anti-virus is an open source anti-virus
toolkit, providing a command line virus scanner,
multi-threaded scanning daemon, well
maintained virus definition database and
database updater. Clam is designed with a
number of features specifically for email
scanning, including the ability to scan raw mail
messages and decompress files that have been
compressed using RAR, Zip, Gzip and Bzip2.
Both the daemon (clamd) and update tool
(freshclam) are highly configurable and whilst the
software is still maturing, the current release
(0.72) appears to be highly stable. The virus
definition database for Clam Anti-virus is
maintained by volunteers and is kept up to date,
with many virus samples being provided to the
project by users of the toolkit. From experience,
it is a very cost effective solution to a commercial
anti-virus package.

5.1.4 SpamAssassin

SpamAssassin is a content analyser that uses
a wide range of heuristic tests in an attempt to
identify email as being either spam or not-spam
(commonly referred to as ham.) It is highly
configurable and additional site specific rules
can be easily added to increase accuracy or to
alter behavior. As it is based on a ranking
system, each test that is positive will increase or
decrease the score assigned to an email message.
SpamCop-URI, one of the numerous plugins
available for SpamAssassin, is also used in order
to provide scoring of URLs appearing within
email messages. Its configuration and use is
discussed in later parts of this paper.

5.1.5 External Mail Exchanger

In order to resolve problems associated with
using the existing external mail exchanger, as
provided by one of our upstream ISPs, a third
party mail exchanger that subscribes to a
number of the same blacklists has been
employed as a replacement.

5.1.6 Blacklists
When selecting external blacklists, the

requirements change somewhat, as the use of an
external RBL has the ability to heavily affect the
rejection of email. In most cases they are updated
automatically, meaning that use of an
untrustworthy RBL could bring an entire email
system to a grinding halt. Spamhaus is a very
effectively maintained RBL and most entries are
a result of significant research. Details regarding
IP addresses listed within the RBL are made
readily available via their website, including
information regarding the reason that it was
added to the blacklist. Additionally, Spamhaus is
managed responsibly and a high level of
reliability is maintained via inbuilt redundancy.

Other RBLs currently available include
SPEWS[11], SORBS[6] and ORDB[5], along with
the Okean lists[2] that contain IP blocks from
China and Korea - countries that appear to be
both soft on spammers and have hundreds of
insecure and virus infected systems. At this
stage, the use of the Spamhaus SBL and XBL lists
appear to be sufficient for our purposes and it
should be noted that any blacklist in use can
have far reaching affects on the ability to receive
email, an affect that is passed on to our clients.
Any decision to implement additional lists will
not made lightly.

The lists maintained by SURBL also use
reputable sources, namely Spamcop.net[9],
which has earned a fairly solid reputation over
time. The use of the SURBL lists is less critical as
it will not prevent the receipt of email in this
configuration, it can only assist in identifying a
message as spam or ham.

5.2 Implementation and
Configuration

As identified before, the first line of defense is
during the initial connection to the SMTP server.
The tcpserver program from the ucspi-tcp suite of
tools is used to listen for incoming TCP
connections on the SMTP port (25/TCP.) When
an incoming connection is received, tcpserver
checks to ensure that the remote IP address is not
denied, before setting up a number of
environment variables and running rblsmtpd,
also from the same suite of tools.

If the originating IP address has been
manually blacklisted, tcpserver will have set the
RBLSMTP environment variable to a non-blank
value, corresponding with the error type and
message that should be returned to the SMTP
client. Depending on its configuration, rblsmtpd
will look up any number of DNS based
blacklists, in this case the Spamhaus SBL/XBL
combined list, sbl-xbl.spamhaus.org, is used. If the

AUUG 2004 - Who Are You?

Combatting Email Borne Pests using Open Source Tools 83

remote IP address is listed in any of the
blacklists, the SMTP session will be terminated,
with either a soft (451) or hard (553) error code,
depending on configuration. If the remote IP
address is not blacklisted, either manually or
within Spamhaus, rblsmtpd starts the real SMTP
server, qmail-smtpd.

Once qmail-smtpd has been started, the SMTP
session progresses through the normal sequence
of events, typically being EHLO, MAIL, RCPT,
DATA and QUIT. If the MAIL command specifies
an email address or domain that is listed on the
local blacklist, upon receiving a RCPT command,
Qmail will reply with the following:

553 sorry, your envelope sender is in my
badmailfrom list (#5.7.1)

This prevents receipt of the message,
effectively ending the SMTP session, unless a
different envelope sender is provided via
another MAIL command.

If a valid envelope sender is provided and the
SMTP session completes successfully, the
message will be queued for local or remote
delivery. Instead of invoking the standard
queuing component of Qmail, qmail-queue, the
Perl based qmail-scanner.pl script is invoked, via
the QMAILQUEUE patch[15] for Qmail. In this
case Qmail-Scanner has been configured to use
Clam AntiVirus, for identification of viruses that
are being transported via email messages. If
Clam identifies the message as being infected,
the entirety of the raw mail message is saved
within the quarantine directory and a
notification email is sent to the system
administrator. Normal delivery of the message is
effectively aborted and the message will not be
queued for delivery to the intended recipient.

If the message is not identified as a virus,
SpamAssassin is used in order to perform spam
identification. If SpamAssassin identifies the
message as being spam, Qmail-Scanner adds the
X-Spam-Status: and X-Spam-Level: headers, using
the rankings returned by SpamAssassin. An
additional Received: header is added detailing
the envelope sender, the results from Clam
AntiVirus and SpamAssassin, along with the
time taken to process the message. Finally, the
message is passed to qmail-queue which queues
the message for local or remote delivery.

Some of the fine tuning of SpamAssassin
should be mentioned, particularly the use of
Spam URI Realtime Blacklist (SURBL) and
SpamCop-URI. As previously mentioned, many
spam email messages contain random words,
blocks of text and/or munged words, attempting
to thwart spam filters. The URL (or URI) for the
website that is being advertised cannot be
altered, otherwise recipients of the spam cannot

locate the products or services being advertised,
rendering the spam useless. Unlike normal IP
based realtime blacklists, SURBL contains a list
of URIs, or more accurately, a list of domains,
that have appeared within spam messages. A
number of different lists are made available via
DNS queries, although the URI list provided by
SpamCop[9] is the most prominent.

Both the sc.surbl.org and ws.surbl.org lists have
proven to be very effective, although a new
domain will not be detected until it is added to
the list, typically via the submission of spam to
SpamCop. Repeat offenders will however be
typically caught and the messages tagged
appropriately.

A flowchart detailing the implementation
and configuration is provided in figure 1.

5.3 Deployment and Maintenance
Rather than trying to add the filtering and

blocking system onto the primary production
mail server, the system was built on a separate
server that would scan mail before passing it
through to the primary mail server, if it was not
quarantined. This allowed for the system to be
built and tested prior to being moved into
production use, eliminating potential problems
caused by the sudden upgrade or changeover.
Additionally, the filtering system can be
removed from the loop, should the need ever
arise, by simply redirecting delivery to the
primary mail server.

After the above mentioned software was
installed and configured, manual testing was
performed, before altering the mail exchanger
(MX) records for our corporate domains to use
the mail scanning server. When we were
satisfied that the system was working reliably,

Figure 1: Mail Scanning Gateway

AUUG 2004 - Who Are You?

84 Combatting Email Borne Pests using Open Source Tools

our clients were notified of the impending
changes and all domains were shifted across.

Most of the software used requires very
minimal maintenance. The only exception to the
rule being the virus definition database for Clam
AntiVirus, which is automatically updated on
the hour via a cron job. Software upgrades occur
occasionally, however as with most Unix based
software, the compilation and installation is
typically seamless.

6. Enter Greylisting
Whilst the use of the Spamhaus SBL and XBL

had a significant impact on the amount of spam
delivered to our clients, it was still far from being
an ideal solution. The primary cause of this is the
frequent changes in the systems used to deliver
spam, particularly when systems infected with
viruses such as Sobig and LoveGate are being
used as relays. Such infected systems are a haven
to spammers, as it is very difficult to trace the
original sender and the number of infected
systems allows them to rapidly switch, making it
harder to block via IP address. In order to
increase our fight against spam, greylisting[17]
was added to the above configuration, around a
month later.

OpenBSD[3] version 3.3 onwards includes a
spam deferral daemon called spamd1[4], that is
designed to reject unwanted email in a manner
that is efficient to the user and very inefficient to
the sender. SMTP connections from blacklisted
listed IP addresses are stuttered and delayed by
reducing the TCP receive window size (to 1 byte
by default) and delaying for a given period of
time (1 second by default) between the
transmission of characters. This effectively
causes the blacklisted sender to send one
character of data per TCP packet, wasting
bandwidth and time whilst communicating with
the tarpit. Put simply, it is designed to waste
spammer’s resources, keeping them on the hook
for as long as possible - over 900 seconds in some
cases.

The current version of spamd has support for
SMTP greylisting, a technique used to filter
incoming email based on the behavior of the
sender. When an unknown SMTP server
attempts to deliver an email message, a soft
SMTP error code (450) is returned and the
connection terminated, after the RCPT command
is received. At this point, the tuple consisting of
the remote IP address, envelope from address
and envelope to address are recorded in a local
database. If the same server reattempts delivery

of the same message (with a matching tuple)
after a specified period of time (30 minutes by
default) the IP address is added to the whitelist,
allowing future transactions to bypass spamd
and communicate with the real SMTP server.

A well designed SMTP server will typically
retry delivery at regular and decreasing
intervals, effectively being the basis on which
greylisting is designed. Depending on
configuration, delivery attempts will typically
continue for up to a week, if a successful delivery
has not been achieved. The implementation and
use of greylisting prevents the receipt of email
from an unknown SMTP server that does not
retry at respectable intervals.

Many spammers use custom built
applications that attempt to deliver the email
directly to the destination mail server and upon
receiving a soft SMTP error they will either retry
rapidly for a short period of time or give up and
move on. This means that many spam senders
will never become whitelisted and email will
never be accepted from them. A pleasant side-
effect noted when spamd was deployed, was the
reduction in virii being identified and
quarantined. It is believed that this is due to the
internal SMTP engines in many current viruses
behaving similar to spamming applications,
whereby retry intervals are not being adhered to.

The flowchart shown in figure 2 details the
greylisting service provided by spamd,
effectively being installed prior to the mail
scanning gateway.

7. Results
Initially an average of approximately 40,000

messages were being delivered per month, with
a large percentage believed to be spam. During
the first month of the system being deployed,
approximately 2000 virii were detected and
quarantined and a further ~8000 messages were
blocked due to originating from IP addresses
listed in the Spamhaus SBL or XBL. From
anecdotal evidence, a number of clients who had
been receiving in excess of 100 spam messages
per day were now receiving around 5-10 per day.

1. Note that this is completely different to the spamd
daemon included within SpamAssassin.

Figure 2: OpenBSD spamd with Greylisting

AUUG 2004 - Who Are You?

Combatting Email Borne Pests using Open Source Tools 85

With the addition of greylisting around a
month later, the average number of email
messages being delivered for the following
month was reduced to approximately 22,000,
with just 447 virii being quarantined during the
month. Once again, anecdotal evidence showed
that clients originally receiving in excess of 100
spam messages per day were receiving just 1 or
2 per day.

The primary result is a lot of happy
customers who no longer have to delete
hundreds of spam and virii from their inbox,
saving both time and bandwidth for all
concerned.

8. Future Work

A number of areas exist whereby the system
could be further enhanced or extended. While a
lot of data is generated by the various
components of the system, at this stage none of it
is collated or graphed, requiring the system
administrator to watch numerous log files.
Closer monitoring and reporting would be
beneficial as this would reduce the amount of
ongoing work required, as would it increase the
feedback regarding the effectiveness of the
system.

OpenBSD’s spamd lacks the support for a
number of commands and as a result, does not
appear to be fully compliant with RFC2821[18].
This has caused at least one problem due to a
strangely implemented mail relay issuing a
RSET command prior to attempting delivery of
email. The RSET command is currently
unrecognised by spamd, resulting in a hard error
code and the email being bounced. This
command could easily be added, along with a
number of other commands required by
RFC2821.

Given the recent release of Cabir[20], the first
proof of concept worm written to target mobile
phones, the author would be interested in
exploring the application of filtering to mobile
and ad-hoc networks. Whilst Cabir is not
considered a real threat, due to numerous
technical complexities, it is quite feasible that
further mobile phone viruses will be written in
the future, ones that may spread with greater
ease and be more destructive. Additionally,
there are problems with SMS based spam,
analogous to email based spam although
transmitted via SMS messages, although this
appears to be more of an issue overseas than in
Australia.

9. Conclusion
As shown in this paper, email borne pests,

can be effectively combatted using a carefully
designed mail filtering system. The
implementation of this project has only used
open source tools and technologies, creating a
cost effective, secure and reliable system; a
system that can easily be replicated and
deployed elsewhere. The more mail servers that
deploy techniques to combat these pests, the
harder it will be for spammers to effectively
deliver their wares.

There does not appear to be a single solution
to email borne pests, rather a multi-layered
approach is required in order to identify and
eliminate as many as is feasibly possible. Whilst
it is always possible for some pests to bypass the
mail filtering system, a significant reduction is
still far better than none, increasing the usability
of what is arguably the worldʹs most important
communications media.

Bibliography
[1] Clam antivirus, http://clamav.sf.net/.

[2] Okean Asian Spam Blocks, http://
www.okean.com/asianspamblocks.html.

[3] OpenBSD, http://www.openbsd.org/.

[4] OpenBSD spamd, http://
www.openbsd.org/spamd/.

[5] ORDB - Open Relay Database, http://
www.ordb.org/.

[6] SORBS - Spam and Open Relay Blocking
System, http://www.sorbs.net/.

[7] Spamassassin, http://
www.spamassassin.org/.

[8] Spamcop-uri, http://sf.net/projects/
spamcopuri/.

[9] Spamcop.net, http://www.spamcop.net/.

[10] The Spamhaus Project, http://
www.spamhaus.org/.

[11] SPEWS - Spam Prevention Early Warning
System, http://www.spews.org/.

[12] SURBL - spam URI Realtime Blocklist,
http://www.surbl.org/.

[13] D. Berstein. Qmail: the Internet’s MTA of
choice, http://cr.yp.to/qmail.html.

[14] D. Berstein. ucspi-tcp, http://cr.yp.to/ucspi-
tcp.html.

[15] B. Guenter. QMAILQUEUE patch, http://
www.qmail.org/qmailqueue-patch.

[16] J. Haar. Qmail-scanner, http://qmail-
scanner.sf.net/.

AUUG 2004 - Who Are You?

86 Combatting Email Borne Pests using Open Source Tools

[17] E. Harris. The Next Step in the Spam
Control War: Greylisting, http://
projects.puremagic.com/greylisting/
whitepaper.html, 2003.

[18] J. Klensin. Simple mail transfer protocol.
RFC 2821, 2001.

[19] P. Resnick. Internet message format. RFC
2822, 2001.

[20] Symantec Security Response.
Symbos.cabir, http://
securityresponse.symantec.com/avcenter/
venc/data/epoc.cabir.html.

