AUUG 2004 - Who Are You?

ICAP - The Internet Content Adaption Protocol

Enno Davids

<enno.davids@metva.com.au>

ABSTRACT

As the Internet has matured the so has the need for organizations to apply policy to the
content that comes in off the net to our various domains. This policy takes the form of
admonitions about what we may surf, what is safe to surf or even substitution of content
for what we might otherwise see. It may involve compression of content, automated
translation from one language to another or indeed one markup style to another or even
something as prosaic as merely suppressing annoying ads. ICAP is a means to allow
standard web proxy servers to offer such services without compromising their basic

caching mission.

1. ICAP defined

ICAP, the Internet Content Adaption
Protocol is the formalization of a protocol which
has been in use for some time by a number of
vendors. It was first standardized in an informal
group called the ICAP Forum which consists of
vendors with an interest in products that could
leverage such a standard.

In more recent times the OPES (Open
Pluggable Edge Services) working group who
are working to define mechanisms for
extensions to be plugged into existing proxies,
caches and servers, recognized the prior art in
ICAP by documenting it as a preliminary step to
their larger task. This document is RFC 3507 and
serves as a neutral standard in the manner of
other internet RFCs of the past.

Clieat

browser

Figure 1: Model of an ICAP installation.

ICAP - The Internet Content Adaption Protocol

1

HTTF - IC!P

proxy

Cliea’r
browser

So what is ICAP? Simply put ICAP allows an
administrator to define some policy to be
applied to internet content. Internet content in
this case is specifically Web content as ICAP is
intended primarily for use in web proxies at the
network boundary of an organization, although
there is no reason why other services such as
email or instant messaging couldn’t use it too.

The policy that ICAP implements can be
applied either before content is acquired (i.e.
before the request passed out of your network)
or after the content arrives (i.e. examining/
altering the payload in a server response).
Content may be passed unaltered, modified or
indeed blocked in its entirety.

The model of an ICAP installation is shown
in Figure 1 below.

service

Clieg’r

browser

71

AUUG 2004 - Who Are You?

A typical installation consists of an ICAP
server operating in conjunction with a proxy
server. The proxy remains in the role it has had
for some time now and its configuration remains
largely unchanged. (In particular this means that
access control and authentication of proxy and
client remain unchanged and thus the
disruption of adding ICAP to an existing
infrastructure may be low.) As requests and
responses pass through the proxy it hands them
off to the nearby ICAP server which deals with
them according to its function and
configuration.

Note that ICAP is a largely stateless protocol
and is passed across a socket connection. This
means all the traditional load balancing and
resourcing solutions for HTTP work equally
well for ICAP. It means that ICAP installations
can scale seamlessly from small models where
the server is co-resident on the same host as the
proxy to large installations where a proxy farm
might rely on a load balanced ICAP server farm
and any intermediate variations that make sense
for the size of the load being offered.

It may be worthwhile briefly introducing a
new piece of jargon which the ICAP RFC uses
here, namely that of “origin server”. With the
plethora of servers in these installations it
becomes important to differentiate them in some
simple manner. Notably then we have the proxy
or cache server which the user’s browser
interacts with, the ICAP server which the proxy
deals with and the remote web site or origin
server which the user is actually trying to access.
ICAP also deals with systems it refers to as
surrogates, essentially reverse proxies or
accelerators which have some affinity with the
origin server(s), but for most purposes the
presence or absence of these systems is
essentially invisible to the systems we care
about.

Having seen how a web proxy might access
an ICAP server leads to the natural question of
what does ‘adaption’ mean in this context.
Simply put, the ICAP protocol allows for the
inspection and subsequent acceptance,
modification or complete rejection of internet
content both before and after the request takes
place.

Adaption thus may encompass any number
of operations such as:

e content substitution. The content is
completely replaced by some alternate and
presumably more preferable content. This
may be complete replacement or merely
some partial re-working of what's already
there. Examples of this might include:

o natural language translation. Content
may be subject to automated translation.
This may be an alternative when web-
sites themselves fail to offer content in a
manner that is useful to your population.
We can presuppose some form of higher
quality automated translation than those
we've seen online to date!

o banner ad suppression? Banner ads,
indeed most forms of ad can be
suppressed in a variety of ways based on
where they are served from, the size and
shape of them, whether they are static or
dynamic images and so forth.

¢ re-coding markup and content. Content is
unaltered from the human perspective but
has been changed in its internal
representation perhaps. Examples of this
might be:

o HTML --> WAP. An automated procedure
might be developed to translate ‘plain’
HTML from a web site into something
more suitable for portable or handheld
devices.

o GIF --> PNG. Modern browsers all
support the PNG graphics format but few
web sites avail themselves of it in spite of
superior performance and file size. An
ICAP server could do this conversion
automatically and save bandwidth on an
internal network.

® access control

o rated content. Content which identifies
itself as for an age restricted audience
may be blocked in an automated manner.

o work/non-work content. This is similar to
the above but perhaps more arbitrary.
Blocking cricket and football sites is often
done for instance due to the high volumes
of network traffic they often generate.

® virus scanning. Perhaps the most obvious
and useful task on which ICAP is put to use
today.

* compression. Most modern browsers are
equipped to understand content which has
been compressed with UNIX gzip. In
networks where bandwidth is at a premium
(say ocean cable to a remote station) it may
make sense to compress any uncompressed
content which is presented.

So having seen all these motherhood
statements lets look at the protocol a little more
closely. ICAP defines three types of transactions/
operations which it can perform. The first of
these is the OPTIONS request. This is the only
mandatory operation an ICAP server must

72 ICAP - The Internet Content Adaption Protocol

AUUG 2004 - Who Are You?

implement and serves principally as a
mechanism for a proxy to determine which of
the other ICAP services is available in an ICAP
server.

Given that OPTIONS is asynchronous to
other operations of the server and indeed as
most servers are typical UNIX servers which can
handle multiple requests on multiple sockets
simultaneously, the OPTIONS packet can also be
used by network monitoring systems as a “ping’
for checking the health of an ICAP server.

The next operation type is the REQMOD
operation. This as its name implies is an
opportunity for an ICAP server to examine a
content request and optionally pass a modified
form of it back to the requesting proxy server (or
indeed quash the request entirely). REQMOD is
passed the entire request from a browser and
may examine it. As it has the entire request it
may examine any or all of it in making its
determination and indeed choose to modify any
or all of the request. Examples here include
simple things like stripping cookies from known
data miners like doubleclick from the request to
wholesale rewriting of the request such as
changing a request for a forbidden piece of
content to an error page alerting the user that
their request was blocked.

ICAP responds with a set of return codes
which are clearly inspired by HTTP:

¢ an ICAP protocol error status

* a HTTP error - primarily used for poorly
formed requests

® a 204 ‘no modifications’ response

to possibly modified
request to client browser

Cliéi’r

browser

Figure 2: The REQMOD operation.

i

3. Proxy retums response HTTeE —3 ICﬂ'

proxy

¢ a 200 response (we presume here that some
changes were made to the request)

Finally Figure 2 below pulls all this together
for us.

A few quick final notes on REQMOD then. As
we noted, the ICAP status bears a familial
resemblance to HTTP. This is both good and bad
as we will later see. Good in that the familiarity
means we innately have some grasp of what is
going on sooner than we otherwise might and
bad because these statuses have nothing to do
with the underlying HTTP transactions status. In
REQMOD this is not a big deal but later it will
be. Suffice it to say that the ICAP status should
not be confused with the status of an
encapsulated HTTP transaction which is being
inspected and possibly adapted. An extreme
example is an ICAP server could virus scan a
HTTP response and deduce there were no
viruses. ICAP would signal 200, all is well and
squid might then accept an error response page
from an origin server. (which was virus free of
course!)

The final operation type is the RESPMOD.
This is likely the workhorse of the ICAP
protocol. It allows an ICAP server to examine the
data returned from an origin server as its
response to the HTTP request. This in fact is
where the virus scanning of the last example
takes place, on the body of the HTTP response.
Once again, the server may respond with an
error, a modified response body or indeed pass
the data unchanged.

Specifically the statuses it may respond with
are:

2. (modified?) HTTP
request passes to origin
server

service

1. HTTP request passed to
ICAP server as REQMOD

ICAP - The Internet Content Adaption Protocol 73

AUUG 2004 - Who Are You?

origin server

1

1. Client request passesto HT]ﬂ : ICﬂ

proxy

Client

2. Origin server response
passesto ICAP serverin
RESPMOD transaction

service

3. Possibly modified
content is passed back to
client browser

browser

Figure 3: The RESPMOD operation.
an ICAP error

* a 204 ‘no modifications’ response

®* a 200 response (which may or may not
contain the original HTTP response data)

Once again we note that an ICAP 200
response may encapsulate an error response
from an origin server and the two should not be
confused. Also note that the ICAP server can
also do some more subtle things like modifying
cookies, or re-writing the caching parameters (to
affect either your proxy, your browser or both).

Note that there is a significant potential for
delay in this scenario. Typically this manifests as
web surfers browsing large objects which must
be completely downloaded before they can be
passed to ICAP for a determination as to
whether they can be passed on to the surfer. For
jobs like compression there is little that can be
done here. The entire object must be available
before it can be compressed and passed on. This
is significantly at odds with the behaviour we
are used to seeing where our browser sees a
steady stream of data as it arrives and squid for
example only adds it to the cache when it has
completely arrived.

Some ICAP operations, particularly
inspection tasks like virus scanning may benefit
from examining only some small portion of the
returned content before passing judgment. To
this end, ICAP has a piece of functionality called
preview where an ICAP server can be presented
with some small portion of an origin server
response (as soon as it is available) and can
perform its work on this previewed data). Thus
if you're fetching a CD-ROM ISO image your

74

virus scanner might only examine the first few
Mb before declaring it is happy. A much better
result than waiting for all 700Mb to be
downloaded, scanned and then passed to you all
at once. In fact, some browsers and most
individuals will suffer a timeout in such

circumstances! ©

There is of course no equivalent to this for
REQMOD but then again your requests are
unlikely to be this big to begin with.

So having looked at ICAP why should we
choose to use it? Well firstly if you want
functions like this, this is a standard way of
getting them. It allows you get these functions
without adding too much complexity into squid
itself (following the tool model UNIX pioneered
in some sense) and indeed because of its
network communications model allows its load
to spread to a separate host from the proxy when
the need arises or indeed to more than one other
host in high load environments. It is, as has been
noted both open and scalable and can be
efficiently load balanced (with the high
availability benefits this can bring).

All of this is great stuff. So we then should ask
why might I not choose to make use of ICAP?
The simplest reason may be the most
compelling. You've already solved all these
problems. Its not broke and you choose not to fix
it.

Or you may find you have a partial, but ‘good
enough’ solution in place and the complexity,
downtime or user re-training doesn't bear
thinking about. Most sys admins have plenty to

ICAP - The Internet Content Adaption Protocol

AUUG 2004 - Who Are You?

do already and adding this may not be high on
their list of things to try...

Or you may have a proprietary solution in
place and are locked in, in some manner. Once
again, if its working, this may not even be a bad
thing.

Finally, you may prefer to wait for OPES.
They will be the be-all and end-all in this space...
according to them at least. (The cynics will note
the difference in approach of course - ICAP is
codifying an existing protocol so people can
keep using what already works. Meanwhile off
in a corner a committee is off designing the new
replacement that will be all things to all men.
Can anyone say X.400?)

The most compelling real reason you might
choose to forgo ICAP at the moment sadly is a
very simple one. Squid and ICAP together are
not yet ready for the big time. There are BUGS!
They are currently show stoppers, at least when
I last tried them in March’'04. As with all open
source though we can expect that things will
improve. My problems may have been related to
the ICAP server side rather than the squid
portion of the solution so squid with a
commercial ICAP server may be robust and
reliable. This is one of those areas where you
have to evaluate a potential solution and move
on from there...

For my part, I'm comfortable that if it doesn’t
work now, it soon will.

2. ICAP and Squid

For the most part if you want to use ICAP
with squid you have to do it the hard way. This
pretty much reflects the not yet ready for prime
time state of things I suspect. It may also be due
to people not having heard much about ICAP at
the current time.

ICAP support is thus not yet widely available
in the common squid source tarballs or indeed in
the pre-built binaries you may be tempted to
download. Happily, building squid yourself is
fairly straightforward on most of the platforms
you're likely to try it on.

Start by getting a copy of the squid sources
with the ICAP support added in. Late last year
the state of the art was to grab the squid source
tree and apply the ICAP patches that are (still)
available. Now things have improved as Duane
has merged the patch into the official squid CVS
repository at sourceforge. The recommended
way to get ICAP enabled squid sources then is to
fetch the whole shebang from sourceforge. A
special tag is available of ‘icap-2_5" which can be
used in a checkout to grab the source you care
about. Note that the squid 3 C++ rewrite is not

yet considered stable so although squid 2.5 is
officially described as somewhere between
stable and moribund, it does seem to form the
basis of most new feature work at this time.

So, to grab the source tree you'll be wanting
something not unlike the command line shown
here:

cvs-d \
":pserver:anonymous@cvs.sourceforge.net:/\
cvsroot/squid" checkout -r icap-2_5 squid

The build process is a fairly straightforward
GNU autoconf style build only slightly
complicated by the fact that as it comes out of
CVS you in fact need to generate the configure
script yourself first. A configure.in is provided
and indeed a bootstrap.sh file does most of the
hard work for you. You may have to play with
versions of the autoconf support tools though
depending on your platform.

After this it pretty much a matter of using the
standard configure and make commands and
going off for a few leisurely coffees. When doing
the configure remember to use -
-enable-icap-support. In fact you'll likely want a
bunch of other options too depending on which
squid features you are enamored of.

Having built an ICAP enabled squid you
need to add some config to your squid.conf to
tell it where to find its ICAP service. If you're
installing from scratch the sample config file
already has all the potential config in it in the
usual manner for you to edit and customize to
your needs. The brief list of config items looks
like this:

icap_enable <on|off>
icap_preview_enable <onloff>
icap_preview_size -1
icap_check_interval 300
icap_send_client_ip <onloff>
icap_send_auth_user <onloff>

icap_auth ...
icap_auth_scheme Local://%u
icap_auth_scheme LDAP://ldap-server/\
can=%u,dc=company,dc=com
icap_auth_scheme WinNT://nt-domain/%u
icap_auth_scheme \
Radius://radius-server/%u

icap_service ...
icap_service servl reqmod_precache 0 \
icap://icapl.mydomain.net:1344/reqmod
icap_service serv2 respmod_precache 0 \
icap://icap2.mydomain.net:1344/respmod

icap_class classname serv1 serv2
icap_access classname allow | deny [!]Jaclname...

Some of this like icap_enable is self
explanatory whilst other bits are more arcane.
Rather than belabor it here I defer to the

comments in the sample config file which are
pretty clear.

ICAP - The Internet Content Adaption Protocol 75

AUUG 2004 - Who Are You?

Having built squid, we now need to find
ourselves an ICAP server of some sort. Two
choices are available. Open Source and
Commercial. In the realm of Open Source the
pickings are fairly slim in the same way that
there are few if any OSS AV scanners out there.
Happily the ICAP Forum does make a sample
server available in source form for us to use,
although in its default form it is little more than
demo code.

In the arena of commercial offerings things
are quite different though with many companies
offering solutions for varying sorts of money.
Some offer free limited run time downloads for
those of you who'd like to try before you buy.
Check the ICAP Forum’s partners page for clues
as to who might be worth talking to.

The sample server is a fairly straightforward
beast. It comes as a tarball and implements a
fairly straightforward UNIX socket based server,
albeit one that makes use POSIX threads. (Which
may be sticking point on some architectures).

The sample server implements some
demonstration features, namely:

* banner ad removal based on popular banner
image sizes

e a ‘valley girl’ filter cf. the valspeak or
chefspeak filters from comp.sources.misc a
decade ago...

Unlike squid, the sample ICAP server is not
GNU autoconf based, but follows the simpler
(albeit much less flexible) older style of building
binaries of just using make. Prior to doing so you
should examine the headers to enable those
demo features you'd like to try out and then
crank the handle on the make process. On most
modern machines the make will complete fairly
rapidly as the are only a handful of source files
to process. At this stage you're ready to enter the

debug cycle! ®

It must be noted that the sample server’s
demos are not all that exciting. They are of
course mostly present to serve as worked
examples of functions that are attached to the
framework that is the sample server. As such
there is a sample REQMOD service, which
mostly just echoes back the requests it is passed
to process and a choice of two RESPMOD based
services. The first is the banner stripper we
mentioned which simply replaces any images it
sees which are one of the standard sizes it
recognizes as belonging to banner ads with a
substitute image. The second sample is the
valspeak filter which one imagines is meant to
show what a natural(?!?) language translation
feature might look like.

What is also in place of course are fairly
simple set of hooks that you can hang any
functionality you might be inclined to
implement on. This is the real purpose of the
sample server and in this it is at least easy to
integrate into.

Once you’'ve plugged in your code, it should
just run right? Well should may be the operative
word as some of the coding in the sample server
is quite poor and may in fact offer you problems
of its own. You may also want to check that the
license is compatible with your intended use. Its
an open license but its not GNU which may or
may not concern you. (In fact its similar in style
to the old style BSD license with the attribution
clause for those who care...)

If all has gone well, run your sample server,
update your squid configuration to point to it
and see how well your luck is holding up. This
roughly the point I came unstuck 6 months ago.
This is one of those classic your mileage may
vary deals though as quite clearly things have
moved on since then. The new squid
configuration seems to have some support for
fail-soft operation now and automated recovery
where it didn’t when I tried it.

If all else fails, you can debug the squid ICAP
server combo fairly well. Both ICAP and HTTP
are protocols with useful amounts of
conversation taking place in plain text. You can
telnet to your ICAP server and fire in commands
(more likely you'll use a tool like netcat to fire in
‘canned’ test messages) and watch what
happens with packet sniffing tools. Ethereal is a
great choice here as it can decode both HTTP and
ICAP conversations in its most recent
incarnations. Finally of course, both squid and
the ICAP server can produce copious debug info
if asked nicely.

3. Other resources

3.1 The ICAP Forum

As I noted early on, ICAP is owned by an
industry body called The ICAP Forum who
loosely are a bunch of vendors who want to offer
such products in this space and convince
customers they have choices by opening their
interfaces. And from what little I've seen, this is
working well for them so far.

Their web site is at:
http://www.i-cap.org/

They also run a mailing list for discussions
mostly about the standard itself. Its fairly low
volume and it hosted at yahoogroups.com with
all the issues that may imply.

76 ICAP - The Internet Content Adaption Protocol

AUUG 2004 - Who Are You?

http://www.yahoogroups.com/group/icap-
discussions/

3.2 Squid

Squid too has a couple of mailing lists that
may be of help. These are mediated from the
main Squid web site

http://www.squid-cache.org/
The two main lists of interest are
* squid-users
* squid-dev

Note that these list have high signal to noise
ratios and fairly low volume so subscribing is no
great hardship at the current time. Things may
of course change though... Sign up is in the
usual manner for such mailing lists.

3.3 Proprietary support

As noted previously, lots of vendors are
offering proprietary solutions... both in parts
and as a whole system approach. (i.e. proxy and
ICAP servers as a bundle).

Some of these vendors are: (once again see
the ICAP Forum membership page for more
names)

e founders/hosts: NetApp, = WebWasher,
Akamai

* participants: 81 members (and counting)
including most of the AV community, a few
CMS vendors and even the ad vendors we
might be trying to filter!

4. Conclusions

ICAP looks to be an excellent technology for
adding subtle and perhaps useful policy
enforcement to all sorts of networks. Having
said this, the open source offerings are meagre
and clearly parts of the solution still need work.
Things are on the improve though, albeit slowly,
and it can only be a matter of time till sufficient
maturity is reached for production use and ICAP
becomes the solution of choice.

ICAP - The Internet Content Adaption Protocol

78

AUUG 2004 - Who Are You?

ICAP - The Internet Content Adaption Protocol

