
AUUG 2004 - Who Are You?

Kara - A Distributed Configuration Management System for OpenBSD 23

Kara - A Distributed Configuration Management
System for OpenBSD

Adrian Close
Fernhill Technology

<adrian@fernhilltec.com.au>

ABSTRACT
Anyone running computer systems eventually strikes the problem of configuration

management. The simplest approach might be to maintain configuration directly on a
system, making changes by hand, however recovering from a disaster can be quite difficult
if no copies of configuration files exist. Managing multiple systems in this fashion increases
the disaster potential significantly.

Clearly, backups are an important aspect of system management. Revision control of
configuration files is a useful tool, especially when multiple system administrators and
operators are involved. Repeatable methods of configuration change deployment can be
critical to service availability. The ability to automate these tasks can make the difference
between getting the job done and total work overload, especially if you are looking down
the barrel of a task like managing hundreds of systems.

Kara is a framework designed to address these issues. It is not a single bit of software
that will make all your problems go away. Rather it is a methodology, combining a number
of well-known and freely available software packages (CVS, SSH and others) with system
administration techniques gleaned through some years of experience. It still won’t make all
your problems go away, but it should help you keep important configuration files under
control.

Kara is designed not to get in your face unless you want it to. You can manage as much
or as little of your configuration as you like (even just one file), so thereʹs no “flag day”
requirement.

It is unashamedly *nix-centric, aimed in particular (at least in the first instance) at
OpenBSD systems. It should prove easily adapatable to other BSDs and Linux-based
operating systems, as well as some commerical flavours. If you’re unfortunate enough to
be saddled with operating systems that don’t support text-based configuration files, Kara
is probably not the answer.

1. Kara’s Best Friend - CVS
Revision control is probably the single most

important aspect of configuration management.
In our case, CVS provides the core “database”-
like area (known in CVS parlance as the
“repository”) and functionality needed to keep
track of system configuration files, as well as the
ability for multiple people to make changes in an
orderly fashion.

Normally, CVS is deployed with a single
repository and used to manage source code.
However, our situation is a little more
complicated. In particular:

• The machines we are managing may be
scattered across the network, with varying
amounts of connectivity and reachability.
Storing all of the configuration files in the
one CVS repository is not very practical
under these circumstances. We don’t want a
situation where network connectivity is

required in order to restore network
connectivity.

• We are also interested in the ability to make
changes from the machine itself, both for the
above reasons and the desire not to rely on
centralised infrastructure. In fact, being able
to make changes from most anywhere
(assuming appropriate security measures)
would be a definite boon.

• Given the varying security profiles of
systems under management, allowing access
from such systems into a central
configuration repository is dangerous at
best. You might trust users of certain
machines to make changes to their own
environment, but you might not want to give
them full access to everything.

• We need standardised methods of deploying
changes to system configuration. Not all
changes are a simple matter of copying a file

AUUG 2004 - Who Are You?

24 Kara - A Distributed Configuration Management System for OpenBSD

into ‘/etc’. Further, methods of applying
changes differ between operating systems
and indeed, releases of operating systems.

2. Getting Started - CVS on
‘localhost’

Sometimes theory is best learnt by practice.
Here’s a basic recipe for implementing Kara on a
host:

• Top level directory ‘/localhost’. Yes, I can
hear the cries of despair from here - “nooooo,
not another top level directory.” Work with
me on this one. It’s part of my design for a
Grand UniFied [network] Filesystem (‘guff’
for short). If you don’t like it, feel free to put
it somewhere else (‘/etc/localhost’ might
make sense), but hear me out before you go
off in a huff.

• Underneath, ‘/localhost/svc/cvs’. This is the
CVS repository for this particular system (i.e.
“localhost”). You’ll need to be sure and set
up a file mode/permissions structure that
allows your user account read/write access
the repository (you can’t check stuff in to
CVS as ‘root’, although you can check stuff
out). You’ll need to create ‘/localhost/svc/cvs/
CVSROOT’ too. A good way to do this is
with the ‘cvs init’ command, so you get all
the funky CVS control files.

• ‘/localhost/svc/cvs/kara/config’. This is the
CVS “module” into which we’ll put the
system’s configuration files. Underneath this,
we want directories ‘files/etc’. This should
start to look vaguely familiar. (Now, don’t
ever mess directly with the CVS repository
again or the CVS police will hunt you
down.1)

• You may wish to consider file permissions
and ownership within the repository,
especially if you don’t want everyone on the
system to be able to make configuration
changes (then again, you might).

• You’ll want a checkout somewhere of the
‘config’ module so you can play with it. Set
the CVSROOT environment variable to “/
localhost/svc/cvs” and run ‘cvs get kara/
config’. You should get a ‘config’ directory
with subdirectories ‘files/etc’. Go there.

• Copy in the files you want to manage from ‘/
etc’ and use ‘cvs add *’ to tell CVS about
them. Then do ‘cvs commit’ to confirm the
changes. CVS will ask you for comments. I
highly recommend them, even if it’s just
something like “initial check-in”, since they
send a clear message about what you were
trying to do, as opposed to what you actually
did (which you can find using ‘cvs diff’).

• Use a CVS tag on the CVS versions of files
you want to make live on the system. We
suggest something obvious like “LIVE”.
This allows you to check files into CVS and
let other people look at your proposed
changes before they are made live.

• ‘/localhost/opt/kara/var/staging/localhost/
config’. This is a checkout of the
aforementioned CVS module which we’ll
use to stage the configuration files to be
made live on the system (cd to ‘/localhost’
and run ‘cvs get -rLIVE kara/config’ to make
this).
You’ll want to update (‘cvs up -rLIVE’) this
on a regular basis and a crontab entry is
probably the easiest way.

There are several fine features to this
arrangement, not the least of which is that you
can have a number of people checking out the
configuration database and working on it from a
number of locations. CVS can be used over SSH,
so you can even do this securely over an insecure
Internet.

3. The Missing Link
The astute reader will have noticed that we

do not as yet have any link back from the CVS
repository to the actual business end of the
operating system’s live configuration (such as ‘/
etc’). All we have is a checkout of some files
under ‘/localhost/opt/kara/var/staging/localhost
/config/files/etc’.

You could do something simple like create
symbolic links from ‘/etc’ to the appropriate files
in the checkout area. This would be OK in many
cases, but sometimes changes in configuration
files require special action to take effect (such as
HUP’ing a daemon or running a program to
import a plaintext file into a database).

Since we’re aiming at a repeatable and largely
automatable system, we probably want
something like a collection of installation shell
scripts (for one thing, this mitigates the risk of
operator error). And since we’re also looking at
running this system on a potentially large
number of machines, some way of distributing
these shell scripts and keeping them up to date is
also desirable (preferably without having to

1. There are times when performing actions on the CVS
repository directly is desirable, or even necessary, such
as relocating or removing modules if you make a
mistake. Do so with extreme care. Also, note that this
sort of modification can cause existing checkouts to
break, so you might want to just delete them and check
out again. If this seems impractical, you now
understand why direct repository operations are evil.

AUUG 2004 - Who Are You?

Kara - A Distributed Configuration Management System for OpenBSD 25

manually install updates on each machine).
Ideally the configuration scripts would adhere to
the Unix philosophy of “doing one thing and
doing it well” - default scripts to handle most
cases, specific scripts for special cases and an
uber-script to tie them all together.

And so we turn once more to our good friend
CVS…

4. A Tree of Configuration
Actions

As much as we try to avoid centralisation,
some does inevitably creep in. In order to
maintain our collection of shell scripts we need
somewhere to put them. A CVS repository is a
pretty good way of doing this, especially since
CVS was designed for managing software
projects.

We think that three possible configuration
actions per file are enough to handle any
situation, namely:

• ‘pre.sh’ - e.g. shut down a daemon.

• ‘install.sh’ - e.g. copy the file.

• ‘post.sh’ - e.g. start the daemon again.

1. First, we need a central host to hold the
master repository. This can effectively be
anywhere, but your choice of location should
be relatively secure (since anyone with
access to the repository can have a
significant deleterious effect on the operation
of your systems) and well connected (since
youʹll want remote systems to be able to talk
to it).

If you’re looking for a little more reliability in
your master repository, it’s worth noting that
the client nodes just need read-only access.
You could create multiple read-only
repositories, updated from the master.
In fact, a read-only repository (i.e. a copy of
the master) is a fine idea, since the client
nodes themselves should never need to
update the action scripts. Since it’s read-only,
there’s probably no reason not to make it
availble via ‘anoncvs’ (see http://
www.openbsd.org/anoncvs.shar for an
example), unless you have other stuff in the
repository, which I wouldnʹt recommend.

2. On the master system you choose, create a
CVS repository (see above). You’ll want a
module called ‘kara’. We put ours in ‘/
localhost/opt/kara/svc/cvs’.

(With a bit of luck, you’ll have a distribution
with a ‘tar’ file containing a pre-populated
repository.)

3. Since the way things are done often changes
subtly between operating system releases, it
is probably wise to maintain distinct sets of
configuration files per major operating
system revision. Create a ‘releases’ module
under ‘kara’ in the repository and
underneath, a module name that makes
sense for the operating system revision that
youʹre dealing with (in our case we chose
‘3.5’ since weʹre only dealing with OpenBSD
and have no great need to maintain two sets
of version numbers - Kara 3.5 goes with
OpenBSD 3.5).

We’ve chosen to make one directory per
release, rather than use the branching
capabilities of CVS, as we feel this path is
less prone to confusion come upgrade time.
A simple symbolic link to the required
version is probably more obvious than CVS
arcana…

4. Now we have modules ‘kara/releases/3.5’.
Underneath this create modules ‘config/
actions/’. This is where the actual installation
scripts will live.

5. Create ‘kara/releases/3.5/opt/kara-tools’.
This is where our “uber-script” that drives
all the others will live.

6. Drilling down still further, create modules
‘kara/releases/3.5/config/actions/kara/
defaults’ and ‘kara/releases/3.5/config/
actions/etc’.

• The ‘defaults’ module holds the default
installation scripts. Probably the only
sensible default is an ‘install.sh’ that
copies the file in question.

• The top level of the ‘actions’ module
mirrors the filesystem, containing one
directory per file. Each file’s directory
contains one or more of ‘pre.sh’,
‘install.sh’ and ‘post.sh’, as required for
that file. If a script does exist, the “uber-
script” uses the default instead.

5. Action Script Examples
The configuration action scripts can (and

probably should) be quite simple. Updating
system configurations is fraught with danger at
the best of times and automation introduces the
potential for automated failure. In the face of an
error, we’d like the system to a) refrain from
making any further changes (thereby hopefully
limiting the damage) and b) tell a human.

It is intended that the system be driven by
‘cron’, which mails the output of any jobs to the
controlling user (probably ‘root’). If you make
sure that mailbox actually gets read, you should
get the important news from Kara.

AUUG 2004 - Who Are You?

26 Kara - A Distributed Configuration Management System for OpenBSD

Our standard system expects the scripts to be
shell scripts, but there’s no real reason you
couldn’t extend the system to support scripts
written in Perl, or Python, or anything else that
takes your fancy. Just remember to incorporate
lots of error checking in your scripts.

5.1 Example default ‘install.sh’
#!/bin/sh

echo "Kara default configuration file \
 install script ($2):"

echo -n Copying $1 to $2...

cp $1 $2

if [$? != 0]; then
 echo Error - $0 exiting.
 exit 1
fi

echo done.

Notably, as it is, this script does not create
directories. So if you add a file in a directory in
your CVS confguration checkout, the ‘cp’
command will fail, the Kara update process will
fail and you’ll get mail. We think this is a feature
- adding new configuration directories is
generally a significant event and we like the
extra check and balance the default script gives
us.

If you don’t, it should be easy to extend the
script to auto-create directories. Better yet,
create a file-specific install script that makes
them and leave the default script as a warning.

5.2 Example ‘post.sh’ (for Squid)
#!/bin/sh

echo "/etc/squid/squid.conf post-install \
 script ($2):"

echo -n Restarting squid...

/usr/local/sbin/squid -k reconfigure

if [$? != 0]; then
 echo Error - $0 exiting.
 exit 1
fi

echo done.

6. Introducing… The Uber-
Script(s)!

So, we’re nearly there. We have a CVS
repository of configuration files and a CVS
repository of action scripts that know what to do
with them. We just need something to glue them
together - in particular, to work out when/what
configuration files changes and which script to
run to put them into place. Having identified

two distinct tasks, following the Unix philosphy,
it seems to make sense to create distinct
programs to deal with them separately.

Our first script examines the repository and
produces a list of files needing attention, storing
this in an intermediate format for use by the
second script. It does this by simply running a
CVS update on a “staging” checkout of the
configuration repository and examining the
output.

This separation of function also gives us the
useful ability to manually create or tweak the
intermediate file to request specific actions
manually, say for debugging purposes.

6.1 Example “uber-script” config file
This is currently in the repository as ‘kara/

release/3.5/opt/kara-tools/kara-config.props’.
CONFIGFILECHECKOUT=/localhost/opt/kara/var/
staging/localhost/config/files/
CONFIGACTIONCHECKOUT=/localhost/opt/kara/
libexec/release/3.5/config/actions/
default_installscript=/localhost/opt/kara/
libexec/release/3.5/config/actions/kara/
defaults/install.sh
cvsworkfile=/localhost/opt/kara/var/staging/
localhost/config/cvsworkfile

6.2 Example “uber-script” - part 1
This is currently in the repository as ‘kara/

release/3.5/opt/kara-tools/cvsup-buildprops’.
#!/usr/bin/perl

Required modules
use strict;
use FileHandle;
use CS::Properties();

Get config
my $configprops = new \
 CS::Properties("kara-config.props");
my $CONFIGFILECHECKOUT= \
 $configprops->get("CONFIGFILECHECKOUT");
my $cvsworkfile=
 $configprops->get("cvsworkfile");

This is how we run CVS
my @cvscmd = (
 "cd $CONFIGFILECHECKOUT; cvs -q -d update"
);

my $cvsoutputprops = new \
 CS::Properties($cvsworkfile);

read any pre-existing, pending CVS output
$cvsoutputprops->read($cvsworkfile);

Run CVS update and build properties list of
any new files to process.
my $fhcvscmd = new FileHandle;
open $fhcvscmd, "@cvscmd|" or die \
 ("failed to run CVS command\n");
my $line = $fhcvscmd->getline();
while ($line) {
 $line =~ /^(.)\s+(.+)$/;

AUUG 2004 - Who Are You?

Kara - A Distributed Configuration Management System for OpenBSD 27

 my $cvsAction = $1;
 my $cvsFile = $2;
 my $cvsStatus = "todo-pre";
 my $item = [$cvsAction, $cvsStatus];
 $cvsoutputprops->put($cvsFile, $item, \
 time());
 $line = $fhcvscmd->getline();
}
$fhcvscmd->close();

Flush list of updated files
$cvsoutputprops->write($cvsworkfile);

6.3 Sample intermediate file
(‘cvsworkfile’)

The intermediate format is borrowed
somewhat from the land of Java, and is basically
name/value pairs in a text file, extended to store
arrays. A fine man by the name of Craig Smith
(http://home.mira.net/~galap) wrote some code
(Java and Perl) to manipulate files such as these.
They were originally intended just as simple
configuration files (astute readers will have
noticed this use in the above code) but have since
been perverted to a quick and dirty database.
Thanks Craig!

 This is an example of what you might find on
a running system in ‘/localhost/opt/kara/var/
staging/localhost/config’.

etc/ntp.conf=list {
 U
 todo-pre
 1084430056
}

The first line obviously represents the
filename in question. The first element of the
array represents the notification from CVS (“U”
for “Updated”). The second is the status of the
update and the third is an epoch-second
timestamp for the last action taken.

6.4 Update state transitions
The process of installing the update involves

three distinct major states and three closely-
related error states:

‘todo-pre’
Initial state, ready to run ‘pre.sh’. As set
by ‘cvsup-buildprops’.

‘todo-pre-error’
An error occurred while running ‘pre.sh’.

‘todo-install’
The installation script for this file should
be run.

‘todo-install-error’
An error occurred while running
‘install.sh’.

‘todo-post’
The post-installation script for this file
should be run.

‘todo-post-error’
An error occurred while running
‘post.sh’.

Note that there is no automated process for
recovering from an error condition (although
you could of course implement one). The general
procedure would be to resolve the error
condition and reset the relevant state to ‘todo-
pre’.

6.5 Example “uber-script” - part 2
This script does the real work of running the

action scripts. It has some notable bugs, not the
least of which is the fact that it doesn’t handle
removed files. However, it’s survived several
years of production use largely intact, so it can’t
be all bad.

This is currently in the repository as ‘kara/
release/3.5/opt/kara-tools/update-config’.

#!/usr/bin/perl

use strict;
use FileHandle;
use CS::Properties();

Get config
my $configprops = new CS::Properties("kara-config.props");
my $CONFIGFILECHECKOUT=$configprops->get("CONFIGFILECHECKOUT");
my $CONFIGACTIONCHECKOUT=$configprops->get("CONFIGACTIONCHECKOUT");
my $cvsworkfile=$configprops->get("cvsworkfile");
my $default_installscript=$configprops->get("default_installscript");

read existing CVS output
my $cvsoutputprops = new CS::Properties($cvsworkfile);
$cvsoutputprops->read($cvsworkfile);

Process list
my $cvs_file;
foreach $cvs_file ($cvsoutputprops->keys()) {

AUUG 2004 - Who Are You?

28 Kara - A Distributed Configuration Management System for OpenBSD

 my @item = $cvsoutputprops->get($cvs_file);
 my $cvs_action = $item[0][0];
 my $cvs_file_status = $item[0][1];
print STDERR "$cvs_action $cvs_file $cvs_file_status\n";

 CASE: {

 ($cvs_file_status eq "done") && do {
 # no update required
 last CASE;
 };

 # Things OK - process this puppy!
 # File was updated
 ($cvs_action eq "U") && do {
 print "* Updated - $cvs_file\n";
 doPreAction($cvs_file,$cvs_action,$cvs_file_status);
 doInstall($cvs_file,$cvs_action,$cvs_file_status);
 doPostAction($cvs_file,$cvs_action,$cvs_file_status);
 last CASE;
 };

 # File updated, local copy patched instead of downloading new file
 ($cvs_action eq "P") && do {
 print "* Patched - $cvs_file\n";
 doPreAction($cvs_file,$cvs_action,$cvs_file_status);
 doInstall($cvs_file,$cvs_action,$cvs_file_status);
 doPostAction($cvs_file,$cvs_action,$cvs_file_status);
 last CASE;
 };

 # Diffs between local copy and repository version merged OK
 ($cvs_action eq "M") && do {
 print "* Merged - $cvs_file\n";
 doPreAction($cvs_file,$cvs_action,$cvs_file_status);
 doInstall($cvs_file,$cvs_action,$cvs_file_status);
 doPostAction($cvs_file,$cvs_action,$cvs_file_status);
 last CASE;
 };

 # Additions/removals
 # New file. New service?
 ($cvs_action eq "A") && do {
 print "* Added - $cvs_file\n";
 doPreActions($cvs_file, $cvs_action, $cvs_file_status);
 doInstall($cvs_file,$cvs_action,$cvs_file_status);
 doPostActions($cvs_file,$cvs_action,$cvs_file_status);
 last CASE;
 };

 # Ahem... this is just wishful thinking as CVS never says "R".
 ($cvs_action eq "R") && do {
 print "* Remove - $cvs_file\n";
 doRemove($cvs_file,$cvs_action,$cvs_file_status);
 last CASE;
 };

 # Bad things happened - stop and tell a human!
 # Merge attempted but failed - conflicts must be resolved by hand
 ($cvs_action eq "C") && do {
 print "* Conflict - $cvs_file\n";
 print "Aborting due to conflict!\n";
 exit 1;
 };

 ($cvs_action eq "?") && do {
 print "* Unknown - $cvs_file\n";
 print "Aborting due to unknown file!\n";
 exit 1;
 };

AUUG 2004 - Who Are You?

Kara - A Distributed Configuration Management System for OpenBSD 29

 # Blank or otherwise unrecognised line - shouldn't happen
 print "* Aborting - unable to parse: $_\n";
 exit 1;

 } # end of switch

} # end of main program

############################
Action processing

sub doPreAction {
 my ($cvs_file, $cvs_action, $cvs_file_status) = @_;

 my $actionscript = "$CONFIGACTIONCHECKOUT/$cvs_file/pre.sh";
 my @actionargs = ("$CONFIGFILECHECKOUT/$cvs_file", "/$cvs_file");

 # check to see if pre.sh script exists. If not, not fatal.
 if (-x $actionscript) {
 my $result = system($actionscript, $actionargs[0], $actionargs[1]);
 if ($result != 0) {
 changeStatus($cvs_file, $cvs_action, "todo-pre-error");
 die "Error in:\n $actionscript (@actionargs)\n";
 }
 else {
 changeStatus($cvs_file, $cvs_action, "todo-install");
 }
 }
 else {
 print STDERR "$actionscript not found\n";
 changeStatus($cvs_file, $cvs_action, "todo-install");
 }
}

sub doInstall {
 my ($cvs_file, $cvs_action, $cvs_file_status) = @_;

 # Check for install.sh. Use default if it doesn't exist.
 my $actionscript = "$CONFIGACTIONCHECKOUT/$cvs_file/install.sh";
 my @actionargs = ("$CONFIGFILECHECKOUT/$cvs_file", "/$cvs_file");

 if (-x $actionscript) {
 my $result = system($actionscript, $actionargs[0], $actionargs[1]);
 if ($result != 0) {
 changeStatus($cvs_file, $cvs_action, "todo-install-error");
 die "Error in:\n $actionscript (@actionargs)\n";
 }
 }
 elsif (-x $default_installscript) {
 my $result = system($default_installscript, $actionargs[0], $actionargs[1]);
 if ($result != 0) {
 changeStatus($cvs_file, $cvs_action, "todo-install-error");
 die "Error in:\n $default_installscript (@actionargs)\n";
 }
 }
 else {
 print "Can't find $actionscript or $default_installscript \
 - quitting!\n";
 changeStatus($cvs_file, $cvs_action, "todo-install-error");
 exit 1;
 }
 # Mark install done.
 changeStatus($cvs_file, $cvs_action, "todo-post");
}

sub doPostAction {
 my ($cvs_file, $cvs_action, $cvs_file_status) = @_;

 # check to see if post.sh script exists. If not, not fatal.
 my $actionscript = "$CONFIGACTIONCHECKOUT/$cvs_file/post.sh";
 my @actionargs = ("$CONFIGFILECHECKOUT/$cvs_file", "/$cvs_file");
 # check to see if post.sh script exists. If not, not fatal.
 if (-x $actionscript) {

AUUG 2004 - Who Are You?

30 Kara - A Distributed Configuration Management System for OpenBSD

 my $result = system($actionscript, $actionargs[0], $actionargs[1]);
 if ($result != 0) {
 changeStatus($cvs_file, $cvs_action, "todo-post-error");
 die "Error in:\n $actionscript (@actionargs)\n";
 }
 }
 else {
 print STDERR "$actionscript not found\n";
 }
 # Mark post-action done.
 changeStatus($cvs_file, $cvs_action, "done");
}

sub doRemove {
 my ($cvs_file, $cvs_action, $cvs_file_status) = @_;

 # Check for remove.sh. Fail if it doesn't exist!
 my $actionscript = "$CONFIGACTIONCHECKOUT/$cvs_file/remove.sh";
 my @actionargs = ("$CONFIGFILECHECKOUT/$cvs_file", "/$cvs_file");
 if (-x $actionscript) {
 if (system($actionscript, $actionargs[0], $actionargs[1]) != 0) {
 changeStatus($cvs_file, $cvs_action, "todo-remove-error");
 die "Error in:\n $actionscript (@actionargs)\n";
 }
 } else {
 print STDERR "$actionscript not found\n";
 changeStatus($cvs_file, $cvs_action, "todo-remove-error");
 exit 1;
 }
 # Mark remove-action done.
 changeStatus($cvs_file, $cvs_action, "done");
}

####################
Helper subroutines

sub changeStatus {
 my ($cvs_file, $cvs_action, $cvs_file_status) = @_;
 $cvsoutputprops->put("$cvs_file", [$cvs_action, $cvs_file_status, time()]);
 $cvsoutputprops->write($cvsworkfile);
}

7. Scheduling Kara
You’ll probably want to automate the

running of Kara, which you might do via ‘cron’.
Note that besides running the two uber-scripts,
you might also want to automatically update
your Kara action scripts from the master
repository.
Kara updates
#
update local config
*/15 * * * * cd /localhost/opt/kara/libexec/\
release/3.5/opt/kara-tools && \
./cvsup-buildprops && ./update-config
update Kara tools
0 1 * * * cd /localhost/opt/kara/libexec/\
release/3.5 && cvs -q up -d

8. Kara and File Permissions
Kara is unfortunately pretty dumb when it

comes to file ownership and permissions. Some
of this is due to the CVS filter through which
each file passes. The default install script will
happily install files as ‘root’, using the default

umask, so youʹll probably wind up with files of
mode 644.

In the case where files contain sensitive
information you don’t want every user on the
system to see, you should create a specific action
script for the file that sets appropriate
permissions (create a dummy, set permissions,
then copy the file). Indeed, some software
subsystems perform checks on their
configuration files and won’t run if they’re
“wrong”, so this can be quite important, even for
an essentially single-user box like a firewall.

Likewise, since Kara mostly runs as root in
order to do its work, slack controls on your CVS
repository can lead to a security nightmare. Lock
it down!

9. Kara and Backups
There’s a great line in the BSDI manual -

something like “If you donʹt do backups, youʹll
be sorry.” This is as true today as it was then.

AUUG 2004 - Who Are You?

Kara - A Distributed Configuration Management System for OpenBSD 31

Backing up the master action script
repository should be pretty obvious - just take a
copy of ‘/localhost/opt/kara/svc/cvs’ (or
whereever you put it). You’ll have copies of the
files themselves in checkouts on each node, but
if you lose the repository you’ll also lose all your
file modification history.

Likewise, you’ll probably have checked-out
copies of configuration files on systems other
than the nodes themselves, but you should also
arrange to back up each node’s configuration
repository. It might even make sense for you to
“rsync” them back to a master machine and
backup from there. Or perhaps even do that
from a couple of “masters”…

10. Klusters?!
While Kara is largely designed with notion of

managing of one system per configuration
repository (so that each individual system can be
self-reliant), there is provision for managing
multiple nodes from a master node.

You may have noticed that we place our
staging checkout in ‘/localhost/opt/kara/var/
staging/localhost/config’. It should be a
relatively simple matter to substitute hostnames
for the second ‘localhost’ in that path and
modify the uber-scripts to iterate over the
multiple directories (or just run multiple copies
with different configuration files).

11. Kara and system patches
In the initial design phase, we concluded that

configuration management and system patch
management were completely separate
problems and decided to concentrate on the
former. However, as it turns out, Kara lends
itself to system patching as well.

This can work simply by having a separate
CVS tree (per operating system release),
containing an overlay of any patches you want to
apply to the system. This could go in a master
CVS respository, since it is probably not as
critical to have available full-time as the
configuration repository. Check out your patch
tree on each system and the standard Kara tools
can be used to perform the updates.

12. Conclusion
We hope that this system is of use to you (all

the code, such as it is, is available under a BSD
licence). At the very least, we hope it sparks
some thought about configuration management.
We’d be very happy to hear feedback,
suggestions for improvement, offers of

assistance or even just a quick note to let us
know youʹre using Kara (or some form thereof).

In conclusion, probably the best advice is to
remember that Kara is just a tool. For it to be
effective, you must adopt a certain discipline. If
you don’t use Kara, Kara can’t help you (and
maybe it’s fine in some cases just to do ad-hoc
edits of configuration files). If you do use it, the
cost is time, but the benefit is (hopefully) sanity.

References
You may find the latest version of this

document at http://www.fernhilltec.com.au/
~adrian/kara/, along with more specific
installation instructions.

Acknowledgements
• Michael Paddon
• Craig Smith
• Neal Wise
• Malcolm Herbert
• The OpenBSD team
• The CVS guys
• Andrew Tridgell (for ʹrsyncʹ)
• The SSH guys
• Staff guinea pigs and customers of Fernhill

Technology.

AUUG 2004 - Who Are You?

32 Kara - A Distributed Configuration Management System for OpenBSD

